1. Convolution

1	2	4	5	4	2
2	5	9	12	10	4
3	7	13	17	14	6
3	7	13	17	14	6
2	5	9	12	10	4
1	2	4	5	4	2

2. Gaussian

• The Fourier transform of a Gaussian function $e^{-\pi x^2}$ is given by

$$F(s) = \int_{-\infty}^{\infty} e^{-\pi x^2} e^{-i2\pi xs} dx$$

$$= \int_{-\infty}^{\infty} e^{-\pi (x^2 + 2ixs)} dx$$

$$= \int_{-\infty}^{\infty} e^{-\pi s^2} e^{-\pi (x^2 + 2ixs - s^2)} dx$$

$$= e^{-\pi s^2} \int_{-\infty}^{\infty} e^{-\pi (x + is)^2} dx; \quad [y \leftarrow x + is, dy / dx = 1]$$

$$= e^{-\pi s^2} \int_{-\infty}^{\infty} e^{-\pi y^2} dy$$

Note that the integral in the last equation = 1, so that a Gaussian transforms to another Gaussian.