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Abstract

In single-particle analysis, a three-dimensional (3-D) structure of a protein is constructed using electron microscopy (EM). As

these images are very noisy in general, the primary process of this 3-D reconstruction is the classification of images according to their

Euler angles, the images in each classified group then being averaged to reduce the noise level. In our newly developed strategy of

classification, we introduce a topology representing network (TRN) method. It is a modified method of a growing neural gas

network (GNG). In this system, a network structure is automatically determined in response to the images input through a growing

process. After learning without a masking procedure, the GNG creates clear averages of the inputs as unit coordinates in multi-

dimensional space, which are then utilized for classification. In the process, connections are automatically created between highly

related units and their positions are shifted where the inputs are distributed in multi-dimensional space. Consequently, several

separated groups of connected units are formed. Although the interrelationship of units in this space are not easily understood, we

succeeded in solving this problem by converting the unit positions into two-dimensional (2-D) space, and by further optimizing the

unit positions with the simulated annealing (SA) method. In the optimized 2-D map, visualization of the connections of units

provided rich information about clustering. As demonstrated here, this method is clearly superior to both the multi-variate statistical

analysis (MSA) and the self-organizing map (SOM) as a classification method and provides a first reliable classification method

which can be used without masking for very noisy images.

� 2003 Elsevier Inc. All rights reserved.
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1. Introduction

In single-particle analysis, a three-dimensional (3-D)1

structure is constructed using electron microscopy (EM).

This method is advantageous because it does not require

a crystal (Frank, 2002; van Heel et al., 2000). Therefore,
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1 Abbreviations used: 2-D, two-dimensional; 3-D, three-dimen-

sional; Cryo-EM, cryo-electron microscopy; TRN, topology repre-

senting network; GNG, growing neural gas network; SOM, self-

organizing map; SA, simulated annealing; MSA, multi-variate statis-

tical analysis; HAC, hierarchical ascendant classification; SD, standard

deviation; MRA, multi-reference alignment.
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single-particle analysis has been applied to membrane

proteins whose crystals are difficult to obtain (Raderm-
acher et al., 1994; Sato et al., 2001; Serysheva et al.,

1995). Recently, the resolution of such analysis has

reached a level better than 10�AA, even for asymmetric

molecules (Matadeen et al., 1999; van Heel et al., 2000).

In general, EM images of protein are very noisy and,

therefore, the primary process of single-particle analysis

is the classification of images according to their Euler

angles, the images in each classified group then being
averaged to reduce the noise level (Frank et al., 1978; van

Heel and Frank, 1981). Thus, the method of classifica-

tion employed is essential for single-particle analysis.

The methods used to classify EM images can be

mainly categorized into two approaches: statistical and
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neural network strategies. Multivariate statistical anal-
ysis (MSA), in which a particle feature is extracted by

reducing variables of the images, is one of the most

widely used methods (Frank et al., 1982; van Heel and

Frank, 1981). Other statistical methods are the hierar-

chical ascendant classification (HAC) (van Heel, 1984),

the hybridized k-means to ascendant classification ap-

proach (Frank et al., 1988) and the fuzzy c-mean

method (Carazo et al., 1990). The accuracies of these
methods are decreased by the noise. To reduce the in-

fluence of the noise, these methods generally require

manual masking, which is adopted for single particle

images in most cases. However, in cryo-EM, it is hard to

mask the protein image because the protein contrast is

very low. In neural network methods, Kohonen�s self-

organizing map (SOM) is well known as a powerful

method for classifying input data by using a two-di-
mensional (2-D) neuronal sheet (Kohonen, 1982). It has

been widely utilized in various fields, including pattern

classification (Kanaya et al., 2001; Marco et al., 1998). It

has also been successfully applied in the classification of

EM images (Marabini and Carazo, 1994; Pascual-

Montano et al., 2001; Radermacher et al., 2001). The

advantage of this approach is its robustness against

noise, and thus the SOM can be applied without
masking. However, when the input data have a complex

topological structure which must be classified, the SOM

is usually not able to set all the input receiving neuronal

units at suitable positions (Martinetz and Schulten,

1994). Since a digitized micrograph has a monochrome

density at each pixel, the image can be represented in the

form of a multi-dimensional vector. In most cases, the

distribution of single-particle projections in multi-di-
mensional space is highly complex because the protein

molecule has a complicated structure and/or is freely

rotated in a thin buffer layer. In the present paper, the

SOM was revealed to produce inadequate unit images,

which are the mixtures of the protein projections with

different Euler angles. This problem arises mainly be-

cause an extremely complex distribution in multi-di-

mensional space is imposed to fit onto a very simple 2-D
latticed, neuronal sheet. Consequently it is hard to set all

the neurons at adequate positions in such a classification

system.

In contrast, the topology representing network

(TRN) (Martinetz and Schulten, 1994; Martinetz et al.,

1993), is known to set all the neurons in a 2-D or 3-D

complex distribution in response to the input data. Re-

cently, the TRN has been used to combine a high-res-
olution 3-D structure acquired by X-ray crystallography

with volumetric data of protein at lower resolution

(Wriggers et al., 1998, 1999). The TRN constructs new

nodes, i.e., connections between units which reflect the

distribution of the input data. The growing neural gas

network (GNG) is one of the TRN algorithms (Fritzke,

1994, 1995), the network structure of which is auto-
matically constructed by the growing process in re-
sponse to inputs. We found that our newly developed

procedure modified from GNG achieves high-perfor-

mance classification of EM images.
2. Materials and methods

2.1. Purification of sodium channels and electron micros-

copy

The sodium channel is a glycosylated membrane

protein with a molecular mass of 300 kDa. The extrac-

tion of voltage-sensitive sodium channels from the

electric organ of Electrophorous electricus eels and their

purification has been described previously (Sato et al.,

1998, 2001). Apoferritin, a soluble protein with a mo-
lecular mass of 450 kDa, was kindly provided by Dr.

Ichiro Yamashita (Advanced Technology Research

Laboratory, Matsushita Electric Ind., Kyoto, Japan).

Sodium channel and apoferritin images were recorded

from unstained cryo samples using a JEM3000SFF and

a JEM3000EFC electron microscope, respectively, at an

acceleration voltage of 300 kV (Fujiyoshi, 1998). The

micrograph was digitized with a Scitex Leafscan 45
scanner at a pixel size of 2.83�AA at the specimen level,

and the applied underfocus values ranged from 3.7 to

7.6 lm for sodium channels, and from 3.0 to 5.4 lm for

apoferritins.

2.2. Image processing of the learning data

A library of 11,000 images of sodium channels was
constructed as previously described (Sato et al., 2001)

and apoferritin images were interactively selected from

whole cryo-EM images to create a library of 520 images.

The images of each protein were aligned rotationally

and translationally (van Heel et al., 2000) with the

projections from its 3-D model and utilized as inputs.

The size of model projections and cryo images were

40� 40 and 61� 61 pixels, respectively. Each image was
masked by a circle equal in diameter to the side length of

the image square. The average of the pixel intensities in

each image was adjusted to 128, which is the median

value of 8-bit densities.

2.3. Algorithms and construction of the growing neural

gas network

The growing neural gas network (GNG) is a topology

representing network (TRN) (Fritzke, 1994, 1995), in

which the adaptation of the synaptic vectors is adopted

as earlier proposed by Kohonen (1982). The most im-

portant difference of the GNG from the SOM is the

process by which a unit-network system is grown, which

includes flexible connections by nodes between units.
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In the GNG, learning starts from two units. Each
unit has its own initial vector composed of a matrix

which is the averaged image of all the inputs as inter-

preted by its pixel densities. Therefore, the unit vector

has the same dimensions as the input image, 40� 40
Fig. 1. Flowchart of the GNG algorithm. It comprises several stages: rand

matches the input, and learning of the input image by the unit. Only the matc

s1, learn the input image. The removal and creation of a unit connection by a

programmed at every predefined iteration.
pixels (¼ 1600 dimensions) and 61� 61 pixels (¼ 3721
dimensions) for the model projection and the cryo-EM,

respectively. In order to create the variations, each

image of the different Gaussian noise, the parameter of

which is set to a standard deviation of 3r, is added to
om selection of an input image, search for the unit image which best

hed unit s1 and its neighbouring units, which are connected directly to

node are programmed at every iteration, and the creation of a unit is
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the initial vector. During learning, the vector is chan-
ged gradually by the input images and can be

interpreted as a unit image which has the same di-

mensions as inputs. A unit is added at every k learning

iteration, and the learning is finished at iteration Itemax.

The algorithm of the modified GNG is given as seen in

Fig. 1 as follows:

0. Start from two units which have vectors of the aver-

aged image with different Gaussian noises. Every
unit possesses an error counter also, which is initially

set at 0. The two units are connected by a node

which has an age of 1.

1. Select an input image Iinp randomly from the input

library.

2. Calculate the squared Euclidean distance, ErrorðsiÞ,
between Iinp and each unit si, which has a vector wsi .

ErrorðsiÞ ¼ kwsi � Iinpk2: ð1Þ
3. Find the closest-matching unit s1 and the second

closest-matching unit s2 by the squared distance,

ErrorðsiÞ, as follows. A set k consists of all the

units.

s1 ¼ argmin
si2k

fErrorðsiÞg; ð2Þ

s2 ¼ argmin
si2ðk�s1Þ

fErrorðsiÞg: ð3Þ

4. Add Errorðs1Þ to the error counter, Cerror, of unit s1.

Cerrorðs1Þnew ¼ Cerrorðs1Þold þ Errorðs1Þ: ð4Þ
5. Increment the ages of all nodes which emanate from

s1.
6. Move s1 towards Iinp by fraction eb of the total dis-

tance.

Dws1 ¼ ebðIinp � ws1Þ: ð5Þ
7. Move sn, which are the neighbor units directly con-

nected to s1, toward Iinp by fraction en of the total

distance.

Dwsn ¼ enðIinp � wsnÞ: ð6Þ
For the first iteration, the learning rates, eb and en,
have initial values of ebs and ens, respectively.

8. Decrease the learning rates, eb and en, from the ini-

tial values, ebs and ens, as follows. Ite and Itemax are

the current and the maximum number of learning it-

erations, respectively.

eb ¼ ebs
Itemax � Ite

Itemax

; ð7Þ

en ¼ ens
Itemax � Ite

Itemax

: ð8Þ

This is in contrast to the original GNG method in

which all the parameters are fixed (Fritzke, 1995).

These steps enhance the convergence in spite of a
huge amount of noise.
9. If s1 and s2 are connected by a node, set the age of
this node to 1. If such a node does not exist, create

a new node whose age is 1.

10. Remove the nodes which are older than Amax.

11. If Ite is an integer multiple of a parameter k on the

condition that the total number of units, nk, is smal-

ler than nkmax, insert a new unit as follows:

• Determine the unit sq with the maximum accu-

mulated error, Cerror.

sq ¼ argmax
si2k

fCerrorðsiÞg: ð9Þ

• Insert a new unit sr halfway between units sq and
sf which has the largest error, Cerror, amongst the
directly connected neighbor units of sq. wq, wf

and wr are the vectors of units sq, sf and sr, re-
spectively. The coordinate of the new unit sr is

calculated as follows:

wr ¼ 1
2
ðwq þ wf Þ: ð10Þ

• Insert a new node between sr and sq and another

one between sr and sf . Remove the original node

between sq and sf .
• Decrease the error counters, Cerror, of sq and sf by

multiplying them by a constant ag. Initialize the er-
ror counter of sr with the new error counter of sq.

• Increment variable nk which is the total number

of units in the system.

12. Decrease the error counters, Cerror, of all the units

by multiplying them by a constant d.
13. Increment the number of learning iterations, Ite.
14. If Ite is not yet Itemax, go back to step 1 and iterate.

In the present paper, the original GNG algorithm

(Fritzke, 1995) has been modified as follows for use in

the classification of protein images in EM. The learning

rates, eb and en, are decreased during the learning by the

annealing method, as shown in Eqs. (7) and (8). More-

over, in the original algorithm, a unit which was not

connected by a node was removed. However, such a unit
was hardly ever produced in the present classification of

the projections. Therefore, our algorithm does not in-

clude removal of such a unit.
2.4. Parameter setting of the GNG

In the GNG, eight parameters (k, Itemax, nkmax, Amax,

ebs, ens, ag, and d) must be set. In these parameters, the
initial learning rates, ebs and ens, are especially important

for classification. ebs determines the amount of change in

the unit image which is most similar to the input.

Therefore, the parameter has to be adjusted depending

on the signal-to-noise ratio of input images. When the

ratio is low, the parameter must also be low. In our case

of the cryo-EM, ebs and ens were 0.01 and 0.0005, re-

spectively. The maximum iteration constant, Itemax, de-
pends on the number of input images in a library. Itemax
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determines the average number of iterated presentations
of an image, which we found to be more than five in the

case of the cryo-EM presented here, which was suffi-

cient. If the library contains 1000 images, 5000 iterations

(1000 images� 5) or more is suitable. The maximum

unit number, nkmax, is also determined by the total

number of inputs and by the signal-to-noise ratio of the

inputs. To achieve a good signal-to-noise ratio of unit

images, the ratio of the total number of inputs to nkmax

should be more than 20 in the case of the cryo-EM. The

number of iterations, k , which determines the intervals

between the creations of units, is calculated by dividing

the maximum iteration constant Itemax by the maximum

unit number nkmax. It should be slightly smaller than

Itemax=nkmax. The node age, Amax, above which a node is

eliminated, is important for control of the density of

connections between units. If Amax is small, many nodes
are deleted at the early stages and node density is de-

creased. The value of Amax which results in an adequate

density of nodes ranges from 30 to 50 in the cases pre-

sented here. The constants to decrease errors, ag and d,
are fixed at 0.5 and 0.995, respectively, as shown by

Fritzke (1995) as well as shown here. However, as the

nature of the input data considerably varied in both

studies, it was not necessary to change these two pa-
rameters.

2.5. The algorithm of the simulated annealing method

Simulated annealing (SA) is a powerful optimization

algorithm that was exploited to anneal the physical

process (Kirkpatrick et al., 1983). This method is uti-

lized here to show the interrelatedness simply by rear-
ranging the unit positions on a 2-D map which has a

structure of a 300� 300 lattice grid. Accordingly, the

SA algorithm is applied to minimize the node lengths

by shifting the unit positions to the optimum, on

condition that a certain minimum distance between

each pair of units is maintained. First, the acquired

GNG map in high-dimensional space is converted into

a conventional 2-D connected map. In this step, the
positions of the units are initialized randomly accord-

ing to the 2-D Gaussian distribution. Accordingly, a

new coordinate ðx; yÞ of each unit is randomly ex-

tracted from the 2-D normal distribution, the param-

eter of which was set to a standard deviation (SD) of

10r . After the conversion, the units are reconnected as

they were in the previous GNG map in high-dimen-

sional space. The free energy of all the networks, Eall, is
calculated as follows:

Eunit ¼
1

2

X
i;j

kUðiÞ � UðjÞk2; ð11Þ

E0
node ¼

1

2

X
i;j

Enodeði; jÞ; ð12Þ
Enodeði; jÞ ¼
kUðiÞ � UðjÞk2 if units i and j

are connected by node;
0 otherwise;

<
:

ð13Þ

Eall ¼ E0
node þ

ð20Þ4

E2
unit

: ð14Þ

Here, ð20Þ4=E2
unit is the local sum of energy caused by the

repulsions between units. In this term, Eunit, the sum of
squared Euclidian distance, is calculated by measuring

the distances between units as shown in Eq. (11), in

which UðnÞ is the position ðx; yÞ of unit n on the 2-D map.

In this map, both x and y are integers because UðnÞ is

always positioned on an intersection of the grid. The

local sum of the energy of nodes, E0
node, becomes larger

as the lengths of the nodes increase. Therefore, the total

energy, Eall, grows smaller as the lengths of the nodes
decrease, but it increases drastically if the distances be-

tween the units decrease too much.

From all the units on the grid, the position of a

randomly selected unit, n, is shifted to a new position

Unew
ðnÞ by the addition of vector ðDx;DyÞ, in which both

Dx and Dy are the integers randomly extracted from the

2-D normal distribution whose parameter is set at a SD

of 3r. The new total energy, Enew
all , is calculated by Eqs.

(11)–(14). If the change results in a reduction of total

energy, it is accepted unconditionally. If the change re-

sults in an increase in the total energy, the value of

P ðDEÞ is calculated based on the following equations to

judge whether to accept it or not:

DE ¼ Eall � Enew
all ; ð15Þ

P ðDEÞ ¼ exp
DE
T

� �
: ð16Þ

Here, DE is the change in total energy and T is the

current temperature. A random number between 0 and 1

is then generated and compared with P ðDEÞ. The change
is accepted if the random number is less than P ðDEÞ.

For annealing, we start at a high temperature of

T0 ¼ 10; 000, then decrease the temperature exponen-

tially as iterations by Eq. (17). The end of the annealing
is fixed at 200,000 iterations, and the time constant s is

set at 20,000.

T ¼ T0 exp
�Site
s

� �
: ð17Þ

Here, Site is the current number of iterations in the an-
nealing process.
2.6. The learning of the SOM

All results of the SOM were calculated according to

Kohonen�s algorithm (Kohonen, 1982; Marabini and
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Carazo, 1994). The map of the SOM has a 2-D lattice
structure in high-dimensional space, and both the

number of units and the connections are unchanged by

learning. Only the positions of units are changed by the

learning rates, as and rs, which are gradually decreased

by Eqs. (18) and (19) during the learning (Marabini and

Carazo, 1994). as0 and Rmax are the initial learning rate

and the initial neighborhood radius, respectively.

as ¼ as0
Itemax � Ite

Itemax

� �
; ð18Þ

rs ¼ 1þ ðRmax � 1Þ Itemax � Ite
Itemax

� �
: ð19Þ

Here, Ite and Itemax are the current and the maximum

number of iterations, respectively.

2.7. Image analysis system

All the calculations in the GNG, the SOM, and the

SA were performed with the image-processing toolbox
of Matlab Version 6 (MathWorks) on a personal com-

puter (Pentium 4: 2GHz, 2GB RAM) running Win-

dows 2000. Every system was programmed using the

Matlab script M-files. The calculation of the MSA

combined with the HAC was performed with Imagic V

(van Heel et al., 1996).
3. Results

3.1. Classification of the model data by the GNG, the

MSA, and the SOM

The GNG has a variable structure during the learning

because of its flexibility to connect or disconnect units

by the growth algorithm (Fritzke, 1994, 1995), unlike
the neuronal map of the SOM which possesses a pre-

defined connection structure of the lattice. The flow di-

agram presented in Fig. 1 outlines the GNG learning

procedure of EM images. The GNG has two units at the

beginning, and the units increase at every specified

number of iteration increments, k, as described in Sec-

tion 2. This method can position units flexibly to adapt

to the distribution of the input images in multi-dimen-
sional space. Each coordinate (unit vector) can be in-

terpreted as a 2-D unit image. This image represents the

local basic pattern of the surrounding images, which is

similar to the class averages and is expected to be better

than those by other methods. The classification ability

of the modified growing neural gas network (GNG) was

compared with those of the SOM and the MSA, using

model projection images immersed in noise and further
using cryo-EM of proteins. As a first step to this ap-

proach, we adopted a simple model data set comprised

of four images which are the projections at different
Euler angles from a 3-D structure model of a sodium
channel (Sato et al., 2001). In the single particle analysis

of the cryo-EM, the multi-reference alignment (MRA)

easily fails to align molecules, especially at the early

stages of iterative analysis. That is due to the huge noise

in the image and the immature references created by the

reference-free method. Furthermore, some special 3-D

structures of a molecule also enhance misalignment.

Therefore, we considered that the ability to classify an
image library which contains misalignments is critical

for the classification method. In order to create mis-

alignment in the library, each of the projections was

shifted 5 pixels from the center towards one of the four

corners of the square (Fig. 2A). Furthermore, 100 var-

ious noise images were added separately to each pro-

jection to construct a total of four hundred input images

(Fig. 2B, 1–4 columns). The monochrome densities at
pixels in each image can be represented in the form of a

high-dimensional vector, and the inputs which origi-

nated from four projections are distributed in four areas

of multi-dimensional space. Because the SOM has a

squared neuronal map with four corners, it is assumed

to easily perform clear classification. As a result, both

the GNG and the SOM automatically created unit im-

ages, which are similar to class averages, as unit vectors
by the classification algorithms. After learning, the SOM

with 3� 3 units showed four clear projections at the

corners of the map; however, five mixed images were

also observed in other positions (Fig. 2C). This char-

acteristic of the SOM is basically independent of the

map size. Even a SOM with 7� 7 units still showed

mixed images in the central area of the map (Fig. 2D),

especially in the central unit. This image is clearly a
mixture of all four projection images (Figs. 2D and E)

because it is similar to the average of all the inputs

(Fig. 2B, right end). In order to quantify the inputs

classified by a unit, the cross-correlation between an

input and each unit image is calculated to find the

maximumly related inputs, i.e., member inputs of unit

after learning. The number of member inputs which is

maximumly related to each unit image is shown in
Fig. 2C. Each unit at the corner has 100 member inputs,

whereas all the others are 0. Thereby, it was possible to

identify the mixed image by the extremely small number

of the member inputs in the case of the model data set.

In contrast, the GNG with 9 units created fine aver-

ages in all the units (Fig. 3A) in response to the same

inputs as those in Fig. 2. It classified projections without

confusion. Moreover, the number of member inputs of
any unit, which is calculated as in Fig. 2C, was similar to

that of any other. The increase in units did not basically

influence the result in the GNG, and clear unit images

without mixture appeared all over the map (Fig. 3B).

The units of the GNG are sequentially numbered upon

creation; therefore, the numbers are not related to the

connections. The connections among the units are



Fig. 2. Classification ability of the SOM using four simple projection images of a sodium channel which are immersed in noise. (A) Four projections

from the sodium channel 3-D model (Sato et al., 2001): view close to the top, view close to the side, and views at oblique angles. Each image was

shifted 5 pixels from the center towards one of the four corners in the square which has 40� 40 pixels, as shown. (B) Four examples of input data and

an average of all the inputs. To create the input images, 100 various Gaussian noise images, whose parameter was set at a standard deviation (SD) of

40r, were added separately to each projection in (A). The total number of images to be learned was four hundred. The SD of the pixel intensities of

the original projection image was almost 9, approximately 1/4 of that of the noise. The total average of the inputs is shown at the right end. (C) The

unit images of a SOM with 3� 3 units after learning. Each unit image is displayed corresponding to its unit position on the square, and a clear

projection image is observed at each corner of the map. Mixed images were also created in all the units except these four. The number of member

inputs of each unit is shown at the top left of its image. The parameters, Itemax ¼ 27; 000, as0 ¼ 0:05 and Rmax ¼ 4, were set as described in materials

and methods. (D) The unit images of a SOM with 7� 7 units. Many mixed images were created near the center of the map as in (C). The parameters

were set as in (C). (E) Magnified images of the central unit and the neighbouring units which are located to its immediate left and right in (D). The

central unit obviously has a mixture of all the four projections as compared with the right-end image in (B).
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modified drastically with the creation and removal of

nodes by the growing algorithm. Therefore, to under-

stand the grouping, the positions of the units must be
reordered according to the connections (Fig. 3C).

Among the classification tasks, the MSA is the most

frequently adopted method for single particle analysis

and it usually utilized with masking. Here, the MSA

combined with the HAC was performed with circular

masking equal in diameter to the side length of the im-

age square to compare its ability to classify the same

image area used in the GNG and the SOM (Fig. 2B).
The resulting 49 class averages are shown in Fig. 3D.

Each average contains a higher level of noise than the

unit image of GNG: One of the averages was blurred in

the MSA (Fig. 3D, No. 48). These results demonstrate

that the GNG is more useful than the SOM and the

MSA to classify a simple data set.

3.2. Comparison of the classification accuracy between the

GNG and the SOM

We compared the quality of unit images between the

GNG (Fig. 3B) and the SOM (Fig. 2D) with 49 units in

response to the same inputs (Fig. 2B). The cross-corre-
lation between a unit image and each of the four original

projections (Fig. 2A) was calculated, and the maximum

value of the four cross-correlations was adopted to
evaluate the quality of the unit image. In the histogram

of the SOM, the 49 maxima of 49 units have two peaks

at 0.95 and 0.65 (Fig. 4A, upper row, black columns).

The higher peak is attributed to the images which are

similar to only one of the four original images, whereas

the lower peak is attributed to the mixed images

(Fig. 2D). On the other hand, the GNG shows a single

peak at 0.75. The peak of the GNG is positioned lower
than that of the SOM. The minimum value in the his-

togram of the GNG, however, is positioned higher than

that of the SOM (Fig. 4A, upper row). Next, in order to

determine the effect of the library size on the unit im-

ages, we increased the number of inputs into the GNG.

The peak becomes sharp and shifts to a high position

close to 1 due to the increase (Fig. 4A, red columns in

the middle and lower rows). This demonstrates that unit
images improve as the number of inputs increases. With

1200 inputs, the peak of the GNG becomes higher than

that of the SOM (Fig. 4A, lower row). In contrast, the

position of the peak is independent of the number of

learning images in the SOM (Fig. 4A, black columns).



Fig. 3. Classification ability of the GNG and the MSA using the same inputs as in Fig. 2. (A) The unit images of a GNG with 9 units after learning.

All the units in the GNG have clear projections. The number of member inputs of each unit is shown at the top left of its image. The total number of

iterations, Itemax, was 7000. A new unit was created in the network at every 500 iterations by the growth algorithm, whereas the maximum unit

number nKmax was 9. The parameters, ebs ¼ 0:05, ens ¼ 0:005, ag ¼ 0:5, d ¼ 0:995, and Amax ¼ 50, were set as described in Section 2. (B) The unit

images of a GNG with 49 units after learning. The total number of iterations, Itemax, was 27,000 and the maximum unit number nKmax was 49. The

other parameters were the same as in (A). (C) Connections created in the GNG in (B) after the learning. Ordinate and abscissa axes show the unit

numbers. A connection between units is shown by a black square. (D) The class averages created by the MSA combined with the HAC. The total

number of eigenimages adopted in the analysis was 69, whereas the number of iterations in the HAC was 24. The images are classified using a circular

mask of maximum size in the image square.
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Therefore, it can be concluded that the GNG can create
a better unit image than the SOM if there are a relatively

large number of inputs.

If a unit has an average image without a mixture,

only one of the four cross-correlations between its unit

image and the four original images is high because the

unit image is similar to only one of the original im-

ages. If a unit has a mixed projection image, more

than one of the four correlations are high because its
unit image is similar to some of the original images. In

this case, the maximum is closer to the second maxi-

mum of the correlations. Therefore, the subtraction of

the second-maximum from the maximum must be an

index of the degree of confusion in a unit. In the
GNG, the histogram of the subtractions (Fig. 4B, red
column) shows a peak similar to that of the maximum

(Fig. 4A, red columns), reflecting the small values of

the second-maxima. In contrast, the histogram is

clearly divided into two peaks, the higher peak at 0.85

and the lower at 0.15 in the SOM (Fig. 4B, black

column), which reflects non-mixed and mixed unit

images, respectively. Again, the total shape of this

histogram did not change as the number of the inputs
increased. These results coincide with the fact that the

SOM had both mixed and non-mixed projection im-

ages in the same map. In contrast, the GNG was

shown to possess only one of the original projections

in every unit.



Fig. 4. Comparison of the SOM and the GNG as to classification ability. (A) A SOM with 7� 7 units (Fig. 2D) and A GNG with 49 units (Fig. 3B)

after learning were compared by the cross-correlations between their unit images and the original four projection images (Fig. 2A) in order to

determine their classification ability after learning. The abscissa axis shows the maximum value among the four cross-correlations between each unit

image and the four original projections, whereas the ordinate axis shows the number of units. The SOM shows two peaks at 0.95 and 0.65 (black bar);

basically neither peak was shifted by an increase in the total number of learning images, N , from 400 (upper) to 800 (middle), and further to 1200

(lower). In contrast, the GNG showed only one peak, which drastically shifted to a higher position as the number of inputs increased (red bar).

Generally, each unit image of GNG has higher cross-correlations than the corresponding one of SOM after the learning of many inputs. (B) De-

tection of mixed unit images by the cross-correlations. The abscissa axis shows the subtraction of the second-maximum from the maximum of the

cross-correlations calculated as in (A) for each unit. The SOM clearly shows two peaks (black bar) which can be divided by a value of 0.5. The lower

peak at 0.15 and the higher peak at 0.85 reflect mixed and non-mixed unit images, respectively. In contrast, the GNG shows only one peak (red bar)

as in (A), reflecting that its unit image is similar to only one of the four originals. The histogram and the error bar in (A,B) show the average and

standard deviation (SD) of five independent learnings, respectively.
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3.3. Optimum rearrangement of the GNG units in a 2-D

space to show the connected relations

Each unit has a clear projection image after learning

in the GNG. However, the map in Fig. 3B is simply
ordered in the sequence of the unit creations. Therefore,

we cannot understand the relationships of the images

simply from the sequential numbers of units (Fig. 3B).

To further classify the unit images based on the unit

connections (Fig. 3C), the units in multi-dimensional

space were converted into units in a 2-D space with node

connections. Accordingly, the units were rearranged by

shifting their positions to make the node lengths minima
in a 2-D space. This type of problem is generally known

as an optimum arrangement problem of the positions to
create minimum connections, and some of the problems

can be solved by using a simulated annealing (SA)

method (Kirkpatrick et al., 1983; Lambert and Hittle,

2000). Therefore, an SA method was designed here to

minimize the node lengths on condition that a certain
distance between units was maintained.

We optimized the GNG with 49 units (Fig. 3B) using

the SA method, and the units were completely divided

into four groups (Fig. 5), which corresponded to the

four original images (Fig. 2A). Each unit in a group

included the same original projection image, and node

connections were created only within a group. No node

connection was created between the groups. The opti-
mized map shows relations of units clearly and, fur-

thermore, it classifies unit images as connected groups.



Fig. 5. Optimum rearrangement of the GNG units on a 2-D map by the simulated annealing method (SA). After learning, the GNG units in multi-

dimensional space (Fig. 3B) were converted into 2-D space at random positions, and the positions were optimized in view of the minimization of the

total of node lengths on the condition that a certain distance between units was maintained as described in Section 2. Each unit number corresponds

to that in Fig. 3B. In the optimized map, the units were clearly divided into four groups corresponding to the original four projections (Fig. 2A). The

maximum number of iterations was 200,000. The initial temperature T0 was 10,000, and the temperature T decreased exponentially as the iterations

increased.
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3.4. Classification of a model image library including

contamination

Generally, high-resolution single-particle analysis

requires a huge number of particle images excised from

electron-micrographs. Therefore, the data set of the

particle images includes impurities, i.e., ice or con-

taminated protein particles in most cases. Some of

them might be caused by incomplete purification of the

protein, especially when the target belongs to some

kinds of membrane proteins which are difficult to pu-
rify. The contaminated images are preferably discarded

from the library in advance since their presence reduces

the resolution of the final 3-D model. If they can be

discarded by the present classification algorithm, it is

very meaningful.

In order to construct a model of such an inhomoge-

neous library, a projection from the 3-D model of a

sodium channel was rotated clockwise through 360� by
45� increments to create eight images, and further round

and square white images were created artificially

(Fig. 6A, upper row). To each image we added 100

various noise images synthesized artificially in order to

create 100 images immersed in noise; thereby, a total of

1000 images were prepared (Fig. 6A, lower row). Both
the GNG and the SOM were basically able to classify

the sodium channel from round and square images to

some extent. In the case of the SOM, the bottom left
unit has a clear artificial round image (Fig. 6B, No. 43);

however, the neighbouring unit on the right has a con-

fused round image with the sodium channel projection

(Fig. 6B, No. 44). Similarly, the two units above the

bottom left show mixed images of artificial square and

round images (Fig. 6B, Nos. 29 and 36). Furthermore,

the unit located at the bottom of the third column shows

a typical mixed image of the projection and circle.
Likewise, in image No. 21, there is a mixture of sodium

channel projections in opposite directions. This and

other examples of unit images created by the SOM are

shown in Fig. 6C. In contrast, every unit of the GNG

has a clear sodium channel projection or artificially

created image without mutual confusion (Fig. 6D).

Furthermore, the projections rotated at different angles

are precisely classified and averaged in this figure. In the
optimized connection map of the GNG, the units with

artificial images are divided into two groups which can

be distinguished from each other (Fig. 6E, right).

Moreover, the sodium channel projections are classified

according to their angles of rotation, and the units with

the same projection are mostly in the same group in



Fig. 6. Comparison of the GNG and the SOM as to classification ability using model projections and artificially created contaminants. (A) A

projection image from a 3-D model of the sodium channel was rotated clockwise through 360� by 45� increments to provide eight original images,

and a white circle and square images were also created artificially (upper row). To each image was added 100 various noise images, as in Fig. 2B, to

provide a library of 1000 images in total. Ten examples are shown (lower row) where each image was created from the upper original image. (B) Unit

images of a SOM with 7� 7 units after learning. Many units have the mixtures of images with different Euler angles. Moreover, a number of units

contain a mixture of the projection and the artificial image. The parameters adopted here are the same as those in Fig. 2D. (C) Examples of mixed

images extracted from (B). The unit number is shown above. (D) Unit images of a GNG with 49 units after learning. Every unit shows a clear

projection, artificial square or round image without confusion. The parameters adopted here are the same as those in Fig. 3B. (E) The optimized

connection map of the GNG by the SA. The unit positions in (D) are optimized as in Fig. 5. The units with artificial circular or square images are

located in the right of the map and are clearly separated from those with sodium channel projections. The projections themselves are further classified

by the connections depending on their Euler angles. The parameters adopted in the SA are the same as those in Fig. 5.
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which units are connected with each other. In the SOM,

it is difficult to discard these contaminated artificial

images completely when the structure of the target
protein is unknown. That is because several projection

images in its units are influenced by the contaminants.

In contrast, the GNG clearly distinguishes the
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projection image from the artificial images, and we can
easily discard a group of contaminants based on the

connections of the units.

3.5. Classification of membrane protein images taken by

cryo-EM according to their Euler angles

Next, we compare the classification accuracy of the

SOM and the GNG using 11,000 particle images of
sodium channel protein taken by cryo-EM (Sato et al.,

2001). The SOM map shows clear averages of projec-

tions at the four corners (Fig. 7A). However, the units
Fig. 7. Accuracy of the SOM and the GNG in classification of sodium channe

after learning. Several units possess clear images; however, a number of uni

round doughnut-like outlines which reflects the confusion which takes place b

of the SOM were as follows: Itemax ¼ 50; 000, as0 ¼ 0:05, and Rmax ¼ 4. (B) U

clear projection. The parameters of the GNG were as follows: Itemax ¼
Amax ¼ 30. Images located at Nos. 3 and 24 reflect the misalignments which h

application of the SA. The actual top view of the sodium channel is located a

shifts in a clockwise direction. The parameters adopted in the SA were the s
located near the center contain unclear projections
which are mixtures of various Euler angle projections.

Among them, some of the unit images also possess

doughnut-like outlines (Fig. 7A, Nos. 3, 4, and 9) indi-

cating confusion in the projections with closed Euler

angles. In contrast, the units of the GNG have clear

projections without confusion throughout the map, and

the four massive corners near the molecular bottom are

clearly observed by the auto-averaging function pre-
sented here (Fig. 7B, Nos. 2, 18, and 40). As a result, a

certain kind of projections, which constitute large por-

tion of the inputs, create a large number of similar unit
l images taken by cryo-EM. (A) Unit images of a SOM with 7� 7 units

ts show unclear mixed projections. The mixed images sometimes have

etween similar but not identically oriented projections. The parameters

nit images of a GNG with 49 units after learning. Every unit shows a

50; 000, k ¼ 1000, ebs ¼ 0:01, ens ¼ 0:0005, ag ¼ 0:5, d ¼ 0:995, and

ad been included in the image library. (C) The optimized map of (B) by

t the bottom center and gradually changes to the side view as the unit

ame as those in Fig. 5.
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images after learning. In the optimized connection map,
the real top view of the sodium channel is located at the

bottom center (Fig. 7C, No. 34), and the unit image is

gradually changed to its side view as the unit is shifted in

a clockwise direction by the rotation. In the map, all the

units are connected and there is no isolated unit. This is

in good accordance with the random orientation of a

sodium channel particle in the frozen buffer layer (Sato

et al., 2001). Again, by using the cryo-EM images as
inputs, the optimized connection map of the GNG is

shown to provide more abundant and beneficial infor-

mation than the SOM.

3.6. Exclusion of contaminated protein using GNG from

the cryo-EM image library

Impurities in an image library caused by imperfect
protein purification is a significant problem in single

particle analysis. Therefore, we mixed the 520 apoferri-

tin images taken by cryo-EM (Fig. 8A) as impurities

into the library of the sodium channel. In the SOM, the

apoferritin projection is located at the bottom right on

the map, and, again, its closest units have interpolations

of the apoferritin into the sodium channel projection as

shown in Fig. 8B (Nos. 42 and 48). The strange round
bottom of the sodium channel molecule is also observed

again in Fig. 8B (Nos. 46 and 47). The numbers of

member inputs of these four units (Nos. 42, 46, 47, and

48) are 104, 264, 224, and 94, respectively (Fig. 8B, red

numbers). These numbers are not so small. Therefore,

only from the number of member inputs, it is hard to

remove all the contaminated apoferritin images from the
Fig. 8. Accuracy of the GNG, the SOM, and the MSA to classify a mixed libr

EM. (A) Eight examples of apoferritin images taken by cryo-EM. To creat

images were prepared. (B) Unit images of a SOM with 7� 7 units after the lea

in the bottom right unit on the map; however, the surrounding units have mix

adopted here were the same as those in Fig. 7A. The number of member in

images. (C) The class averages created by the MSA combined with the HAC.

unit images of a GNG with 49 units after the learning. Most of the unit im
unit images. The class averages calculated by the MSA
combined with the HAC with the same mask are basi-

cally similar to the model projections; the image itself,

however, is not so clear (Fig. 8C). This suggests that

each class average contains wrong constituents with

different Euler angles. In the GNG, clear apoferritin

images were generated in two units (Fig. 8D, Nos. 3 and

46), and only one unit had a mixed image between

apoferritin and the sodium channel (Fig. 8D, No. 28). In
the optimized map of the GNG, the two units with

apoferritin images protruded from a sodium channel

cluster at the upper right (Fig. 9), whereas the unit with

the mixed image was located on the boundary between

apoferritin and the sodium channel on the map (Fig. 9,

No. 28). Because the units with apoferritin images are

located peripherally, it is easy to obviate the contami-

nated appoferritin from the sodium channel averages.
Even by using a contaminated library, the GNG can

classify sodium channel projections accurately based on

their Euler angles.
4. Discussion

In single-particle analysis, the classification accuracy
of particle images is one of the most important factors

for high resolution in a 3-D reconstruction. Until now,

the MSA in combination with the HAC has been widely

used (Frank et al., 1982; van Heel, 1984; van Heel and

Frank, 1981). On the other hand, we have developed a

highly accurate automatic pickup method using a three-

layer neural network (Ogura and Sato, 2001, 2003)
ary composed of sodium channel and apoferritin images taken by cryo-

e a mixed library, 520 apoferritin images and 11,000 sodium channel

rning of the mixed library. A projection image of apoferritin is created

ed images between the sodium channel and apoferritin. The parameters

puts of each unit is shown in red at the side for several confused unit

The inputs are classified with the circular mask as in Fig. 3D. (D) The

ages are clear without confusion.



Fig. 9. The optimized map of Fig. 8D by applying the SA. Two apoferritin images protrude in the upper right from a large cluster of sodium channel

images in the optimized map and form a group of two. However, a mixed image (No. 28) is observed between the sodium channel and apoferritin

groups, which can be easily distinguished by its intermediate position on the map.

Fig. 10. Schematic representation of the classification mechanisms used

by the SOM and the GNG. A cross represents the position of an input

image in Figs. 2 and 3, and a dotted circle represents the area where a

group of the inputs is distributed in multi-dimensional space. Each

projection indicates the original image (Fig. 2A) of the group. A filled

circle and a black line represent a neuronal unit and connection node,

respectively. (A) A schematic demonstrating recognition by a SOM in

Fig. 2C. The SOM has a lattice structure of neural units, and its

connections by the nodes are not changed. Hence, it is hard to set all

the units at the appropriate positions when a distribution of inputs is

not suitable for this network structure. In the case of four groups of

inputs as in Fig. 2, the central unit is far apart from the four areas

whose inputs are distributed, consequently creating a mixed image of

all four original projections. (B) A schematic demonstrating recogni-

tion by a GNG in Fig. 3A. The GNG produces units at the positions

where inputs are crowded in a multi-dimensional space, and the nodes

are formed to connect the units with unit images which are similar to

each other. Therefore, the GNG is able to set all the units at the ap-

propriate positions and classify them properly.

198 T. Ogura et al. / Journal of Structural Biology 143 (2003) 185–200
which enables the pickup of an enormous number of

particles. Therefore, the classification methods are now

required to process more than 100,000 images. In gen-

eral, it is not easy to classify such an enormous number

of images by the MSA or its hybridized method using a

normal computer system. That is because the calculation

is too heavy and requires a huge system memory. Fur-

thermore, to reduce the effects of noise, these methods
generally require masking which includes the possibility

of obtaining artificial effects.

To date, the SOM has been a powerful method in the

classification algorithms of EM because of its resistance

to noise and its processing speed (Marabini and Carazo,

1994). However, the SOM is known to cause topological

mismatches in response to a variety of learning data

(Martinetz and Schulten, 1994). Generally, the number
of dimensions included in an image is the same as the

number of its constituent pixels, implying that an EM

image contains high-dimensional data. Moreover, a

solubilized single particle of protein tends to rotate

freely in a thin buffer layer. In such a case, the particle

images taken by the cryo-EM frequently show complex

distribution in high-dimensional space. However, the

SOM has a simple connection structure of a 2-D lattice
or hexagonal cluster. Due to this disparity between the

complexities of the inputs and the simple structure of the

SOM, mixed images are produced in mismatched posi-

tions as revealed in the present paper. This problem has

been attributed to the fixed connected relations of units

in the SOM. By the learning data consisting of four

groups (Fig. 2B), which correspond to four original

projections (Fig. 2A) in high-dimensional space, unit
images similar to the original projections were created in

the units at the corners of the map (Fig. 10A). Thereby,

during the learning, each of these four units with the

matched images responded most frequently to the
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inputs, while the average of all the four original images
was created in the center on the square, far away from

the four corners. Therefore, in learning, the units located

near the center were able to develop unit images which

were less similar to the inputs and became gradually

unresponsive to the inputs, thus losing further move-

ment. The number of member inputs of such unit was

found to be 0, suggesting the possibility of eliminating

the confused images of the units by the number of the
member inputs. However, using the EM library of so-

dium channel and apoferritin, it was found to be hard to

eliminate mixed images by using the number of member

inputs. Moreover, we consider that it is better to avoid a

method which creates mixed images. When there are

many mixed images, the non-necessary units with such

images consume unnecessary calculation time.

To avoid producing an unresponsive unit, the kernel-
based SOM has been developed recently (Pascual-

Montano et al., 2001; Van Hulle, 1999), in which each

unit has a receptive field which accepts various inputs.

The algorithms of the kernel-based SOM are categorized

into several types based on the regulation of the recep-

tive fields and the learning processes. In this system,

each unit can have equal probability to receive inputs by

decreasing the number of the inactivated units. How-
ever, equal probability does not necessarily lead to a

clear unit image, especially in the classification of im-

ages. When each unit has a broad receptive field that

overlaps those of its neighbours, the units in kernel-

based SOM tend to form mixed averages because the

receptive field expedites activations of various image

inputs at equal probabilities. Moreover, as with the

conventional SOM, this system also adopts fixed con-
nected relations in the 2-D lattice or hexagonal map.

Therefore, the fundamental problem of a gap between

the simple connection structure and the highly complex

distribution of inputs remains and, therefore, would not

be solved by this method.

In contrast, the GNG has a flexible structure of units

and node connections (Fritzke, 1994, 1995). Therefore,

by the growing process, the GNG is able to set its units
at suitable positions based on the coordinates of the

inputs in multi-dimensional space (Fig. 10B). By means

of this strategy, the GNG creates clear projections in all

the units after learning. However, the units are not

numbered in a certain order determined by the con-

nections because the connections are rearranged by

learning. We succeeded in solving this problem by the

optimization using the SA method. In an optimized
connection map of the GNG, the relationships of the

units can be more clearly understood than those of the

SOM. If similar unit images arise in a connected group,

these images can be merged according to the Euclidean

distances between the units in multi-dimensional space.

In GNG, each unit image is not a simple average, but an

average of the member images weighted differently.
Accordingly, the unit image can be used almost as a
class average. Therefore, the GNG can be utilized to

reconstruct a 3-D structure in combination with the

MRA. For the MRA, high quality references can also be

created automatically in the picking up task of particles

by the neural network method (Ogura and Sato, 2003)

and it can be utilized to align precisely. Moreover, the

GNG in combination with the SA can be used not only

to classify images according to its Euler angles but to
eliminate the contaminated images from the image li-

brary.

In the classification by the SOM, the results pre-

sented here clearly show that the user has to eliminate

the confused unit images manually. The exclusion of

the mixed images would be difficult to perform if the

target protein structure is unknown and/or contami-

nated by other proteins. In addition, the calculation
speed of the GNG is almost two times faster than that

of the SOM because the GNG increases units starting

from only two, making the initial calculations very

light. Moreover, the number of units can be set in the

GNG arbitrarily. The MSA combined with the HAC

using a circular mask of maximum size in the image is

shown to not be as effective as the GNG. Therefore, we

conclude that the GNG is a much more powerful
method for classifying images than the MSA and the

SOM.

The robustness of the GNG against noise opens up

new fields for single-particle analysis, such as protein

complexes in which the components are repeatedly

connected to and disconnected from each other. Such

protein complexes are sometimes very important in bi-

ological functions, e.g., signal transductions, protein
folding, and RNA transcriptions. In such a case, the

diameter of the complex is changed according to the

clustering, and the use of masking to reduce the effect of

noise is very difficult. Therefore, the GNG classification

system without masking must be exclusively effective for

carrying out a dynamic analysis of a protein complex at

various clustering states with a huge number of images,

which are collected in combination with the automatic
pickup program (Ogura and Sato, 2001, 2003).
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