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Quantum Mechanics

Is it possible to learn QM without math and atomic physics?

• Probably not very well.
• However, it is critical to start with quantum mechanics, because it is

ll th f d ti f th “b tt ” h t bi l lreally the foundation of the “bottom-up” approach to biomolecular
modeling.
• Goals for this lecture:

1. Provide an intuitive feel for quantum systems using model
systems.

2. Introduce basics of electronic structure calculations, which are2. Introduce basics of electronic structure calculations, which are
critical for force fields and docking calculations.

3. Understand the key scientific ideas behind the jargon (what does
6 31G* ll ?)6-31G* really mean, anyways?).

© Matt Jacobson 



Fundamental QM ConceptsQ p

• Wave-Particle Duality:

Matter and light both behave like waves and particles 
SIMULTANEOUSLY.

• Heisenberg Uncertainty Principle:

We can only know APPROXIMATELY how much y
energy a particle has, where it’s located or what its 
speed has.

• Elementary particles (such as electrons) cannot be 
distinguished from each other.



The Two-Slit Experiment: Light

© http://commons.wikimedia.org/wiki/Image:YoungsDoubleSlit.png



The Two-Slit Experiment: Electrons

© Akira Tonomura, Hitachi



Atomic Structure and Bondingg



The Structure of an Atom
• An atom consists of a dense nucleus that contains positively charged 
protons and neutral neutrons. 

http://www.aboutnuclear.org

• The nucleus is positively charged

• The space around the nucleus contains negatively charge electrons

• The amount of positive charge in protons and negative charge in electrons is 
the same, so a neutral atom has an equal number of protons and electrons.the same, so a neutral atom has an equal number of protons and electrons.

• Protons and neutrons have approximately the same mass and are 1833 
times as massive as electrons.

At b h d lt f i i l i l t• Atoms can become charged as a result of gaining or losing electrons. 

• The numbers of protons in an atom does not change.



Distribution of Electrons in an Atom
• Electrons are continuously “moving” within an atom or molecule

• Quantum Mechanics (QM) uses the same mathematical equations 
that describe the wave motion of a guitar string to characterize the 
motion of an electron around a nucleus 

• The most useful version of QM to chemist was proposed by ErwinThe most useful version of QM to chemist was proposed by Erwin 
Schrödinger

• The behavior of each electron in an atom or a molecule can be 
described by a wave equation A wave equation has a series ofdescribed by a wave equation. A wave equation has a series of 
solutions wave functions.

• Solving the wave equation for a given electron tells us the volume 
of space around the nucleus where the electron is most likely to be 
found This volume of space is called an orbital

• The orbitals can be described by its wave function ψ, which is the y ψ,
mathematical description of the shape of the wave.



Atom Orbitals
• According to QM, the electrons in an atom can be 
thought of as occupying a set of concentric shells that 
surround the nucleussurround the nucleus. 

• The 1st shell is the one closest to the nucleus. The 
2nd shell lies farther from the nucleus and even farther2 shell lies farther from the nucleus, and even farther 
out lie the third and higher-numbered shells.

• Each shell contains subshells atomic orbitals.

• 1st shell: an s atomic orbital

• 2nd shell: s and p atomic orbitals• 2nd shell: s and p atomic orbitals

• 3rd shell: s, p, and d atomic orbitals

4th h ll d d f t i bit l• 4th shell: s, p, d and f atomic robitals



The shape of the three 
2p orbitals. From left to 
right: 2pz, 2px, and 2py. 

Atomic Orbitals
z x y
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are where the wave 
functions have negative 
values and the green 
zones denote positive 
values

The shape of the 1s orbital.
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© Mark Winter, http://www.shef.ac.uk/chemistry/orbitron/
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Which Orbitals are Occupied?Which Orbitals are Occupied?

• Aufbau principle: an electron always goes into the p p y g
available orbital  with the lowest energy 

1s<2s<2p<3s<3p<4s<3d<4p<5s<4d<5p<6s<4f<5d<6p<7s<5f

• Pauli exclusion principle: (a) no more than two 
electrons can occupy each orbital and (b) the two 
l t t b f it i ( )11electrons must be of opposite spin (              )

• Hund’s rule: when there are degenerate orbitals, an 
electron will occupy an empty orbital before it will pair up

2
1

2
1

−+ or

electron will occupy an empty orbital before it will pair up 
with another electron.



Hybridization and Molecular Shapes y p
• Bond angles in organic compounds are usually close 
to 109º (tetrahedral) 120º (trigonal) or 180º (linear)to 109  (tetrahedral), 120  (trigonal), or 180  (linear).  

• The shapes of these organic molecules cannot result 
from bonding between simple s and p atomic orbitals. g p p

• We assume that the s and p orbitals combine to form 
hybrid atomic orbitals that separate the electron pairs 
more widely in space and place more electron density in 
the bonding region between the nuclei.



Ηybrid Orbitals 

© Victor Batista, http://xbeams.chem.yale.edu/~batista/113



σ Bond Formation by Orbital Overlapy p
σ bond: The bonding MO 
has most of its electron 
d it t d l••↑ •• ↓↑↑+

HH

density centered along 
the line connecting the 
nuclei

↑
sigma bond ( σ )

↑

H2 molecule

• All single bonds in organic 
compounds are σ bonds; 

• Every double or triple bondEvery double or triple bond 
contains one σ bond

↑↑

↑↓↑↓
Example: two p orbitals overlap



π Bond Formation by Orbital Overlapy p
A π bond results from overlap between two p orbitals oriented 
perpendicular to the line connecting the nuclei. All of the electron 
density is centered above and below the line connecting the nucleidensity is centered above and below the line connecting the nuclei.

Th id l f t bit l l d t b di MO dThe sideways overlap of two p orbitals leads to a π bonding MO and 
a π antibonding MO. A π bond is not as strong as most σ bonds.

© http://wps.prenhall.com/wps/media/objects/724/741576/chapter_07.html 



σ Bonds in C2H42 4

© Victor Batista, http://xbeams.chem.yale.edu/~batista/113



π Bonds in C2H4

H
H

H
H

H
H

H
HHH HH

Atomic
Orbitals

Molecular
Orbital

The unused p orbital on each C atom contains an electron and this p 
orbital overlaps the p on the neighboring atom to form the π bond.

Orbitals Orbital

© http://wps.prenhall.com/wps/media/objects/724/741576/chapter_01.html



σ and π Bonds in C2H42 4

© Victor Batista, http://xbeams.chem.yale.edu/~batista/113



We will return to Bonding later… (H2
+)

Questions: Atom Structure and Bonding?

Next: Computational Quantum Mechanicsp Q



MM vs. QM
2

2

2

dt
rdm

dr
dV

=−

• In classical mechanics, Newton’s second law is used to describe the
dynamics of the system, i.e. how the system evolves in time.

• Molecular Mechanics (also known as force field methods) ignore the• Molecular Mechanics (also known as force field methods) ignore the
electronic motions and calculate the energy of a system as a function of
the nuclear positions only.

• MM is thus invariably used to perform calculations on systems
containing significant numbers of atoms.

• In some cases, MM can provide answers that are very accurate within, p y
short time compare to QM

• However, MM cannot provide properties that depend upon the electronic
distribution in a molecule such as forming or breaking bondsdistribution in a molecule, such as forming or breaking bonds.

• QM is often used to determine parameters for MM simulations.



QM: Schrödinger Equation
• Electrons are very light particles 

• They display both wave and particle characteristics, and must be 
d ib d i t f f ti Ψdescribed in terms of wavefunction, Ψ.

• The starting point for many discussion of quantum mechanics is:  

Time dependent Schrödinger equation:
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Time-dependent Schrödinger equation:

tm ∂⎭⎩ 2
• A single particle (e.g. an electron) of mass m which is moving through 
space and time (t) under the influence of an external field V (which might

222 ∂∂∂

space and time (t) under the influence of an external field V (which might 
be the electrostatic potential generated by the nuclei in a molecule).

• The kinetic energy operator: 

2

2

2

2

2

2
2

zyx ∂
∂

+
∂
∂

+
∂
∂

=∇



QM vs. MM

• Pros:
1. Quantum mechanics explicitly represents the electrons in the calculation,1. Quantum mechanics explicitly represents the electrons in the calculation, 
so it is possible to derive properties that depend upon the electronic 
distribution and, in particular, to investigate chemical reactions in which 
bonds are broken and formed.  
2. Well-defined hierarchy – in principle can always be  systematically 
improved to obtain chemical accuracy
3. Does not need to be parameterized or calibrated with respect to 
experimentexperiment
4. Can describe excited electronic states, structure, properties, and 
energetics

• Cons:

Computationally very expensive

© H. B. Schlegel 



Wavefunction and Probabilityy
• Ψ is the wavefunction which characterizes the particle’s motion 
• contains all the measurable information about the particlecontains all the measurable information about the particle
• The wavefunction represents the probability amplitude for 
finding a particle at a given point in space at a given time 
• |Ψ|2 is the probability distribution of the particles
• The integration of the probability of finding the particle over all 
space must be 1:space must be 1:

1* =ΨΨ∫ τd 
• The wavefunction of a complete system is commonly 
composed of a set of single-particle orbitals. 



Time-Independent Schrödinger Equation
When the external potential is independent of time then the wave
function can be written as the product of a spatial part and a time part:

This results in the time-independent Schrödinger equation:
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Hamiltonian operator:



Time-Independent Schrödinger Equation

Ψ=Ψ EĤ
• Find values of E and functions

• Partial differential eigenvalue equations: an operator acts on a 

Ψ

function (the eigenfunction) and returns the function multiplied by a 
scalar (the eigenvalue)

One eigenfunction is
• Example of an eigenvalue equation:

ryy
d
d

=)( with the eigenvalue 
r being equal to a

axey =

operator

• The Schrödinger equation is a second-order differential equation as it 
i l th d d i ti f

yy
dx

)( r being equal to a

Ψ

p

involves the second derivative of Ψ



Hamiltonian for a MoleculeHamiltonian for a Molecule
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• kinetic energy of the electrons
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kinetic energy of the electrons
• kinetic energy of the nuclei
• electrostatic interaction between the electrons and the nuclei

electrostatic interaction bet een the electrons• electrostatic interaction between the electrons
• electrostatic interaction between the nuclei

© H. B. Schlegel 



Variational TheoremVariational Theorem
• The expectation value of the Hamiltonian is the variational 

energy dΨΨ∫ * ˆ τH

A i t f ti f l l t h

exactEE
d

d
≥=

ΨΨ

ΨΨ

∫
∫

var* τ

τH

• An approximate wavefunction for a molecular system, when 
substituted into the Schrödinger equation, will always yield a 
higher energy than the actual energy of the system. 

• The more precise the wavefunction that is chosen the closer willThe more precise the wavefunction that is chosen, the closer will 
the calculated energy be to the true energy. 

• The computational method using this principle to obtain 
approximations to correct wavefunctions is called the variational
method. 

• The method is commonly restricted to the ground state, but can 
be extended to others provided they are orthogonalized to the 
(true) ground state(true) ground state. 

© H. B. Schlegel 



Hartree ApproximationHartree Approximation

• Assume that a many electron wavefunction can 
b itt d t f l t f tibe written as a product of one electron functions

LL )()()(),,,( 321321 rrrrrr φφφ=Ψ
• if we use the variational energy, solving the many 

electron Schrödinger equation is reduced to 
solving a series of one electron Schrödingersolving a series of one electron Schrödinger 
equations

• each electron interacts with the averageeach electron interacts with the average 
distribution of the other electrons

© H. B. Schlegel 



Hartree-Fock ApproximationHartree Fock Approximation
• Pauli exclusion principle: a maximum of two electrons can 

occupy an orbital and the spins of the electrons are pairedoccupy an orbital and the spins of the electrons are paired, 
i.e. opposed. 

• The principle demands: the wavefunction for a many-
l t t t b t i ith t t thelectron system must be asymmetric with respect to the 

permutation of the space-spin coordinates for every pair of 
electrons. 

• For a system of N electron in N spin orbitals, can be done by 
writing the wavefunction as a Slater determinant
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© H. B. Schlegel 



The Fock EquationThe Fock Equation
• take the Hartree-Fock wavefunction

φφφΨ
• put it into the variational energy expression

nφφφ L21=Ψ

∫ ΨΨ τd*Ĥ

∫
∫
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=

τ

τ

d

d
E

*

H

• minimize the energy with respect to changes in the orbitals

f φεφ
0/ =∂∂ iE φ

• yields the Fock equation: iiiif φεφ =
Effective one electron Hamiltonian for 
the electron in the pol electronic s stem

Molecular orbital energy

© H. B. Schlegel 

the electron in the polyelectronic system



Fock OperatorFock Operator

KJVTF ˆˆˆˆˆ −++= NE
• Coulomb operator (electron-electron repulsion)

ijj
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• exchange operator (purely quantum mechanical -arises from 
the fact that the wavefunction must switch sign when you 
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j
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g y
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• Both determined by molecular orbital
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© H. B. Schlegel 



Solving the Fock EquationsSolving the Fock Equations

iii φεφ =F̂
A l h S lf i t t Fi ld (SCF)

1 obtain an initial guess for all the orbitals φi

• A general approach: Self-consistent Field (SCF)

1. obtain an initial guess for all the orbitals φi

2. use the current φi to construct a new Fock operator

3. solve the Fock equations for a new set of φi3. solve the Fock equations for a new set of φi

4. if the new φi are different from the old φi, go back to 
step 2.

Stop when the one electron wavefunction is converged

© H. B. Schlegel 



Linear Combination of Atomic Orbitals 

Th t i t t t f t i bit l• The most important wave property of atomic orbitals 

• LCAO: Wave functions are added and subtracted to give 
the wave functions of new orbitalsthe wave functions of new orbitals.

• When orbitals on the same atom interact, they give 
hybrid atomic orbitals that define the geometry of thehybrid atomic orbitals that define the geometry of the 
bonds formed.   

• When orbitals on different atoms interact, they produceWhen orbitals on different atoms interact, they produce 
molecular orbitals that lead to bonding (or antibonding)



LCAO Approximation
• Direct solution of the Hartree-Fock equations is not a practical

proposition for molecules
Th t l t t i t it h i bit l li• The most popular strategy is to write each spin orbital as a linear 
combination of single electron orbitals (atomic orbital, LCAO):

molecular orbital coefficient

∑=
µ

µµ χφ ii c ,

The one-electron orbitals are commonly called basis 
functions and often correspond to the atomic orbitals.

• The objective is to determine the set of coefficients that gives the 
lowest energy of the system

0∂E 0
,

=
∂ icµ



Roothaan-Hall EquationsRoothaan Hall Equations
• For a closed-shell system with N electrons in N/2 orbitals, the derivation of 

the Hartree-Fock equations was first proposed by Roothaan and q p p y
independently by Hall (1951).

• They recast the Fock equations in matrix form, which can be solved using 
standard techniques and can be applied to systems of any geometry. 

F Ci =  εi S Ci
• F – Fock matrix
• Ci – column vector of the molecular orbital coefficients
•  εi – orbital energy
• S – overlap matrix
• In Fock matrix, The two-electron integrals, i.e. (µν|λσ), may involve up to 

four different basis functions (µ,ν,λ,σ), which may in turn be located at four 
different centers.

© H. B. Schlegel 



Solving the Roothaan-Hall EquationsSolving the Roothaan Hall Equations

1. choose a basis set
2. calculate all the one and two electron integrals
3. obtain an initial guess for all the molecular orbital 

coefficients Ci

4. use the current Ci to construct a new Fock matrix
5 solve F C =  S C for a new set of C5. solve F Ci =  εi S Ci for a new set of Ci

6. if the new Ci are different from the old Ci, go back to 
step 4.p

© H. B. Schlegel 



Questions: Computational Quantum Q p Q
Mechanics?

Next: H2
+



H2
+: A Model System For Chemical Bonding

© Matt Jacobson 



H2
+: Hamiltonian

© Matt Jacobson 



Born-Oppenheimer ApproximationBorn Oppenheimer Approximation
• Representation of the complete wavefunction as a product of 

an electronic and a nuclear part:an electronic and a nuclear part:
Ψ (r,R) = Ψe (r; R)ΨN(R)

• where the two wavefunctions may be determined separately 
b l i diff S h ödi iby solving two different Schrödinger equations. 

• the ratio of electronic to nuclear mass (m/M ≅ 5 x 10-4) is 
sufficiently small and the nuclei, as compared to the rapidly y p p y
moving electrons, appear to be fixed

• the nuclei are much heavier than the electrons and move 
more slowly than the electronsmore slowly than the electrons

• in the Born-Oppenheimer approximation, we freeze the 
nuclear positions, R, and calculate the electronic 
wavefunction, Ψe(r;R) and energy E(R)

© H. B. Schlegel 



H2
+: Born-Oppenheimer Approximation

© Matt Jacobson 



H2
+: Born-Oppenheimer Approximation

© Matt Jacobson 



H2
+: Trial Wavefunction with 2 Basis 

F nctionsFunctions

© Matt Jacobson 



H2
+: Trial Wavefunction with 2 Basis 

F nctionsFunctions

© Matt Jacobson 



H2
+: Matrix Formulation of Eigenvalue 2 g

Problem

© Matt Jacobson 



H2
+: Variational Treatment2

our

© Matt Jacobson 



H2
+: A Closer Look at the Integrals2 g

© Matt Jacobson 



H2
+: A Closer Look at the Integrals2 g

© Matt Jacobson 



H2
+: Solving the Secular Determinant2 g

© Matt Jacobson 



H2
+: Eigenfunctions

Bonding results when 
two orbitals with the 
same phase interact. 
When two out-of-phase 
atomic orbitals overlap, 
they cancel each other 

© P.Y. Bruice

y
and produce a node 
between the nuclei. 

© P.Y. Bruice

© Matt Jacobson 



H2
+: Eigenenergies2

(Potential Energy Curves)

© Matt Jacobson 



Questions: H2
+?Q 2

Next: Basis SetsNext: Basis Sets



Slater-Type Orbitals (STOs)Slater Type Orbitals (STOs)
• The basis sets most commonly used in QM calculations are 

composed of atomic functions. An obvious choice would be the Slater 
t bit ltype orbitals.
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Exact for hydrogen atom
• Right asymptotic form
• Correct nuclear cusp condition

3 d 4 t t l t i t l t b d l ti ll• 3 and 4 center two electron integrals cannot be done analytically
• It is common in ab initio calculations to replace the Slater orbitals by 

functions based upon Gaussian

© H. B. Schlegel 



Gaussian-Type Orbitals
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R di l D d f Sl t d

• These completely dominate modern electronic structure calculations

Radial Dependence of Slater and 
Gaussian Basis Functions 

These completely dominate modern electronic structure calculations.
• They are convenient for computations. All two electron integrals can 

be done analytically
• They are actually LESS physically reasonable than the STOs
• Die off too quickly for large r
• No cusp at the origino cusp at t e o g

© Matt Jacobson 



Using Multiple Gaussian Orbitals

© Matt Jacobson 



Basis Sets

© Matt Jacobson 



Basis Sets

Large size versions of s- and p-type atomic orbitals

Change shape

© Matt Jacobson 



What the Basis Set Names Mean

© Matt Jacobson 



Correlation Energy

• In fact, the motions of electrons are correlated and they tend to
id h h i i i l Th i iavoid each other, giving rise to a lower energy. Their motion must 

be “correlated” 
• For a given basis set, the correlation energy is:

HFexactncorrelatio EEE −=
© Matt Jacobson 



Hartree Fock+CIHartree-Fock+CI

• There are many ways in which correlation effects can 
be incorporated into an ab initio molecular orbital 
calculation.

• A popular approach is configuration interaction (CI), in 
which excited states are included in the description of an 
electronic stateelectronic state.

• The overall wavefunction is a linear combination of the 
ground and excited state wavefunctionsground and excited-state wavefunctions.   



Configuration Interaction
• determine CI coefficients using the variational principle

Configuration Interaction
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• CIS – include all single excitations 
– useful for excited states, but not for correlation of the ground state

• CISD – include all single and double excitations

d∫ ΨΨ τ

CISD include all single and double excitations
– most useful for correlating the ground state
– O2V2 determinants (O=number of occ. orb., V=number of unocc. orb.)

• CISDT – singles, doubles and triples
3 3– limited to small molecules, ca O3V3 determinants

• Full CI – all possible excitations
– ((O+V)!/O!V!)2 determinants
– exact for a given basis setexact for a given basis set
– limited to ca. 14 electrons in 14 orbitals

© H. B. Schlegel 



Perturbation Theory Methodsy
Perturbation theory works on the idea that if we know the answer to one problem we can work out an answer
to a closely related problem. Let us suppose that we know the solution of the Schrödinger equation for one
problem, i.e. for one Hamiltonian operator. If we have a problem with a Hamiltonian operator which is fairly
close to the first one, we treat the difference between the Hamiltonian operators as a small perturbation to the
first solution. We can expand the solution to the second problem in terms of the first solution and terms in
various powers of the perturbation.

A particularly successful application to molecules and the correlation problem goes back to Møller and Plesset
in 1933. This is now the MPn method. The Hartree-Fock solution is an approximate solution to the exactin 1933. This is now the MPn method. The Hartree Fock solution is an approximate solution to the exact
Hamiltonian operator. It is however an exact solution to an approximate Hamiltonian operator which is the sum
of Fock operators for each electron. We treat the perturbation as the difference between the exact Hamiltonian
operator and this sum of Fock operators. We then treat the Hartree-Fock solution as the zero order term and
evaluate terms in powers of the perturbation. The zero-order energy is the sum of orbital energies. The first

d ti t th i j t th t l t i t l th t t th f bit l i t iorder correction to the energy is just the two-electron integrals that correct the sum of orbital energies to give
the normal Hartree-Fock energy. The first important correction is the second order term and this leads to MP2.
MP2 is relatively economic to evaluate and gives a reasonable proportion of the correlation energy. Higher
order terms become more and more expensive. MP3 is commonly used but does not seem to give much
improvement over MP2. MP4, with some terms removed to speed things up, is often used. MP4 givesp p g p g
reasonable results but it is much more expensive than MP2. Higher order terms than 4'th order are rarely
evaluated.

Code exists in various programs to calculate optimized geometries with analytic first derivatives of the energy
with respect to atomic coordinates at MP2 level MP2 is thus often the highest level of theory where optimizedwith respect to atomic coordinates at MP2 level. MP2 is thus often the highest level of theory where optimized
geometries are obtained. Similarly analytic second derivatives are available and harmonic frequencies are
also evaluated at the MP2 level.



Møller-Plesset Perturbation Theory
• choose H0 such that its eigenfunctions are determinants of molecular 

orbitals

∑= FH ˆˆ

• expand perturbed wavefunctions in terms of the Hartree-Fock 
determinant and singly, doubly and higher excited determinants

∑= iFH0

• perturbational corrections to the energy
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Møller-Plesset Basis Sets
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Questions: Basis Sets?Q

Next: Semi-Empirical MethodsNext: Semi Empirical Methods



Semi-Empirical MO MethodsSemi Empirical MO Methods

• the high cost of ab initio MO calculations is largely due to g g y
the many integrals that need to be calculated (esp. two 
electron integrals)

• semi-empirical MO methods start with the general form ofsemi empirical MO methods start with the general form of 
ab initio Hartree-Fock calculations, but make numerous 
approximations for the various integrals

• many of the integrals are approximated by functions with• many of the integrals are approximated by functions with 
empirical parameters

• these parameters are adjusted to improve the agreement 
ith i twith experiment

• Intermediate between real (ab initio) QM and MD force 
field approaches in terms of speed and accuracypp p y



Eliminating HF IntegralsEliminating HF Integrals
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Zero Differential Overlap (ZDO)Zero Differential Overlap (ZDO)

• two electron repulsion integrals are one of the mosttwo electron repulsion integrals are one of the most 
expensive parts of ab initio MO calculations

)2()2(1)1()1()|( ττχχχχλσµν λ dd∫=

• neglect integrals if orbitals are not the same

21
12

)2()2()1()1()|( ττχχχχλσµν σλνµ dd
r∫=

νµδνµδ

δδλλµµλσµν λσµν

≠===

=

ififwhere 0,1
)|()|(

• CNDO, INDO and MINDO semi-empirical methods

νµδνµδ µνµν ≠ififwhere 0,1
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Neglect of Diatomic Differential Overlap 
( O)(NDDO)

• fewer integrals neglectedg g

21
12

)2()2(1)1()1()|( ττχχχχλσµν σλνµ dd
r∫=

• neglect integrals if µ and ν are not on the same atom or 
λ and σ are not on the same atom 
integral approximations are more accurate and have• integral approximations are more accurate and have 
more adjustable parameters than in ZDO methods

• parameters are adjusted to fit experimental data and ab p j p
initio calculations

• MNDO, AM1 and PM3 semi-empirical methods

© H. B. Schlegel 



Semi-Empirical Family TreeSemi Empirical Family Tree

© Matt Jacobson 



Semiempirical MethodsSemiempirical Methods

Advantages:g
• Cheaper than ab initio and DFT
• Only truly viable QM like method for entire proteins, but 

even small proteins are barely within reacheven small proteins are barely within reach
• Can be reparametrized for each system / process

Disadvantages:
• H-bond strengths often incorrect (off by several kcal/mol)

Still expensive• Still expensive



Questions: Semi-Empirical Methods?Q p

Next: Density Functional TheoryNext: Density Functional Theory



Density Functional Theory
• DFT is an approach to solve the electronic structure of 
atoms and molecules which has enjoyed an increasing 
i t t i th l t 1980 d 1990interest since the late 1980s and 1990s

• DFT replaces the wave function with the electron 
density as the fundamental unknown:density as the fundamental unknown:

© Todd J. Martinez



DFT Functionals
Hohenberg and Kohn: the ground state energy and other properties 
of a system were uniquely defined by the electron density. 

© Todd J. Martinez



So How Can This Work?So How Can This Work?

⎞⎛ ∇2

• Kohn and Sham introduced the orbital concept into DFT

[ ] ( ) ( )drrrT i
i
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⎛ ∇
−= ∑∫ 2

2

• they wrote the density of the system as the sum of the

( ) ( ) 2∑= i rr ψρ

• they wrote the density of the system as the sum of the
square moduli of a set of one-electron orthonormal orbitals.

( ) ( )∑
i

i



DFT and HF
(approximated in various ways)

In most DFT programs, the Kohn-Sham orbitals are expressed 
as linear combination of atomic-centered basis functions:

( ) ∑( ) ∑=
v

vvii cr φψ



Behavior of DFT and HFBehavior of DFT and HF
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DFT: Exchange Correlation Functionsg
1.

2.

33.
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Problems with DFTProblems with DFT
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Questions: Density Functional Theory?Q y y



Resources and Further Readingg
WWW:

– Glossary of terms used in theoretical organic chemistry: 
http://www.iupac.org/reports/1999/7110minkin

– Online courses: 
http://www.chem.wayne.edu/~hbs/chm6440
http://francisco.compbio.ucsf.edu/~jacobson/biophys206/biophys_206_links.htm

– Atomic orbitals and molecular orbitals: 
http://www.cem.msu.edu/~reusch/VirtualText/intro3.htm
http://winter.group.shef.ac.uk/orbitron

Books:
“Molecular Modeling-Principle and Application”, Andrew R. Leach, Chapter 2, 3
“Organic Chemistry”, Paula Yurkanis Bruice, Chapter 1
“Organic Chemistry” L G Wade Jr Chapter 2Organic Chemistry , L.G.Wade, Jr. Chapter 2
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