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Quantum Mechanics

Is it possible to learn QM without math and atomic physics?

* Probably not very well.
 However, it is critical to start with quantum mechanics, because it is
really the foundation of the “bottom-up” approach to biomolecular
modeling.
» Goals for this lecture:
1. Provide an intuitive feel for quantum systems using model
systems.
2. Introduce basics of electronic structure calculations, which are
critical for force fields and docking calculations.
3. Understand the key scientific ideas behind the jargon (what does
6-31G* really mean, anyways?).

© Matt Jacobson



Fundamental QM Concepts

 Wave-Particle Duality:

Matter and light both behave like waves and particles
SIMULTANEOUSLY.

e Heisenberg Uncertainty Principle:

We can only know APPROXIMATELY how much
energy a particle has, where it’s located or what its
speed has.

* Elementary particles (such as electrons) cannot be
distinguished from each other.



The Two-Slit Experiment: Light

Right slit open
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particle theory

Pattern observed on screen
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Atomic Structure and Bonding



The Structure of an Atom

« An atom consists of a dense nucleus that contains positively charged
protons and neutral neutrons.

|:| neutron
@
. electron

http://www.aboutnuclear.org a

Helium—element name
2———mass number

H e-— symbol

* The nucleus is positively charged
» The space around the nucleus contains negatively charge electrons

« The amount of positive charge in protons and negative charge in electrons is
the same, so a neutral atom has an equal number of protons and electrons.

» Protons and neutrons have approximately the same mass and are 1833
times as massive as electrons.

« Atoms can become charged as a result of gaining or losing electrons.

« The numbers of protons in an atom does not change.



Distribution of Electrons in an Atom

» Electrons are continuously “moving” within an atom or molecule

* Quantum Mechanics (QM) uses the same mathematical equations
that describe the wave motion of a guitar string to characterize the
motion of an electron around a nucleus

* The most useful version of QM to chemist was proposed by Erwin
Schrodinger

 The behavior of each electron in an atom or a molecule can be
described by a wave equation. A wave eguation has a series of
solutions - wave functions.

» Solving the wave equation for a given electron tells us the volume
of space around the nucleus where the electron is most likely to be
found - This volume of space is called an orbital

* The orbitals can be described by its wave function v, which is the
mathematical description of the shape of the wave.



Atom Orbitals

* According to QM, the electrons in an atom can be
thought of as occupying a set of concentric shells that
surround the nucleus.

e The 1st shell is the one closest to the nucleus. The
2nd shell lies farther from the nucleus, and even farther
out lie the third and higher-numbered shells.

 Each shell contains subshells - atomic orbitals.

1st shell: an s atomic orbital

2"d shell: s and p atomic orbitals

3'd shell: s, p, and d atomic orbitals

4th shell: s, p, d and f atomic robitals



Atom iC Orbitals The shape of the three

2p orbitals. From left to
right: 2p,, 2p,, and 2p,.
For each, the blue zones
are where the wave
functions have negative
values and the green
zones denote positive
values.

The shape of the 1s orbital.
Degenerate

orbitals

The shape of the
seven 4f orbitals
(cubic set). From left
to right: (top row) 4f 2,
4f 3, 41,2, (middle row)
RN

Xz -y ) =X )!
4f,.2 A, and (bottom
row) 4f . For each,

Xyz*
the copper zones are

where the wave
functions have
negative values and
the gold zones
denote positive
values.

The shape of the five 3d orbitals. From left
to right: (top row) 3d,?,? and 3d,? (bottom row)

3d,,, 3d,,, and 3d,,. For each, the yellow
zones are where the wave functions have
negative values and the blue zones denote

positive values.

© Mark Winter, http://www.shef.ac.uk/chemistry/orbitron/



Which Orbitals are Occupied?

« Aufbau principle: an electron always goes into the
available orbital with the lowest energy

15<25<2p<3s<3p<4s<3d<4p<5s<4d<5p<6s<4f<bd<6p<7s<5f

« Pauli exclusion principle: (a) no more than two
electrons can occupy each orbital and (b) the two
electrons must be of opposite spin (+%or—%)

 Hund'’s rule: when there are degenerate orbitals, an
electron will occupy an empty orbital before it will pair up
with another electron.



Hybridization and Molecular Shapes

e Bond angles in organic compounds are usually close
to 109° (tetrahedral), 120° (trigonal), or 180° (linear).

e The shapes of these organic molecules cannot result
from bonding between simple s and p atomic orbitals.

 We assume that the s and p orbitals combine to form
hybrid atomic orbitals that separate the electron pairs
more widely in space and place more electron density In
the bonding region between the nuclel.



Hybrid Orbitals

Arrangement of Hybrid Orbitals

Two electron pairs
sp

@ B

Three electron pairs
sp?

Four electron pairs
sp3

© Victor Batista, http://xbeams.chem.yale.edu/~batista/113

(Geometric figure
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o Bond Formation by Orbital Overlap

c bond: The bonding MO

+ has most of its electron
@ density centered along

Potential energy ——=

Higher energy than

Lower energy than

the line connecting the

) nuclel
H, molecule = Hatom

* All single bonds in organic
compounds are ¢ bonds;

separated atoms

* Every double or triple bond
contains one o bond

° Y X (T

Q9 l

-—— —436 kl/mol @‘

Net repulsion Net attraction Example: two p orbitals overlap

Internuclear
distance

separated atoms




n Bond Formation by Orbital Overlap

A  bond results from overlap between two p orbitals oriented
perpendicular to the line connecting the nuclel. All of the electron
density is centered above and below the line connecting the nuclei.

destructive

overlap
A -
v antibonding
- 2 7" molecular
orbital

.
4 out-of-phase
2l V... ¥ _ — energy of the p
o 1constructive atomic orbitals

overlap
Y

p atomic orbitals

v bonding
H: 1 #molecular

orbital
in-phase 7 molecular energy levels
possible orbitals
alignment
of orbitals

The sideways overlap of two p orbitals leads to a = bonding MO and
a m antibonding MO. A  bond is not as strong as most ¢ bonds.

© http://wps.prenhall.com/wps/media/objects/724/741576/chapter_07.html



c Bonds in C,H,

© Victor Batista, http://xbeams.chem.yale.edu/~batista/113

K} ! - )
2s 2p 3sp 2 p
. orb.
hybrid for Tt
orbitals bond
a. o bond formed

by sp2-s overlap

c?c

c bond formed by

sp2-sp2 overlap




n Bonds in C,H,

MDD RREE HA N\ H HOH
~ 3 “— N
S 2p 3sp ' Erh. H H H o H
hybrid for 7
orbitals bond Atomic Molecular

Orbitals Orbital

The unused p orbital on each C atom contains an electron and this p
orbital overlaps the p on the neighboring atom to form the = bond.

1 bond

b.

o bond

© http://wps.prenhall.com/wps/media/objects/724/741576/chapter_01.html



c and « Bonds in C,H,

-
J Side view

Overlapping unhybridized

Top view

J

C sp? 2p orbitals
hybrid orbitals
(—H
o bond
- P . -
H \ F H H 15 e ~
=C orbitals a
H H
C—C @ bond 1 C—C m bond
(a) Lewis structure and bonding of (b) The C—H o bonds are formed by overlap of C (c) The carbon-carbon & bond is formed by
ethylene, C3H,. atom sp? hybrid orbitals with H atom 1s overlap of an unhybridized 2p orbital on each
orbitals. The & bond between C atoms arises atom. Note the lack of electron density along
from overlap of sp? orbitals. the C—C bond axis.

© Victor Batista, http://xbeams.chem.yale.edu/~batista/113



We will return to Bonding later... (H,*)

Questions: Atom Structure and Bonding?

Next: Computational Quantum Mechanics



MM vs. QM

dvVv d°r
—=m —
dr dt
* In classical mechanics, Newton’s second law is used to describe the
dynamics of the system, i.e. how the system evolves in time.

* Molecular Mechanics (also known as force field methods) ignore the
electronic motions and calculate the energy of a system as a function of
the nuclear positions only.

* MM is thus invariably used to perform calculations on systems
containing significant numbers of atoms.

* In some cases, MM can provide answers that are very accurate within
short time compare to QM

 However, MM cannot provide properties that depend upon the electronic
distribution in a molecule, such as forming or breaking bonds.

* QM is often used to determine parameters for MM simulations.



QM: Schrodinger Equation

» Electrons are very light particles

» They display both wave and particle characteristics, and must be
described in terms of wavefunction, V.

» The starting point for many discussion of quantum mechanics is:

Time-dependent Schrddinger equation:

{—h—zvz +V}\P(r,t) _in 2¥LY

2m ot

» A single particle (e.g. an electron) of mass m which is moving through
space and time (t) under the influence of an external field V (which might
be the electrostatic potential generated by the nuclei in a molecule).

* The kinetic energy operator:

g 0t &

+——
ox°>  oy° oz’




QM vs. MM

Pros:
1. Quantum mechanics explicitly represents the electrons in the calculation,

So it is possible to derive properties that depend upon the electronic
distribution and, in particular, to investigate chemical reactions in which

bonds are broken and formed.

2. Well-defined hierarchy — in principle can always be systematically
Improved to obtain chemical accuracy

3. Does not need to be parameterized or calibrated with respect to

experiment
4. Can describe excited electronic states, structure, properties, and

energetics

cons:

Computationally very expensive

© H. B. Schlegel



Wavefunction and Probability

* ¥ is the wavefunction which characterizes the particle’s motion
« contains all the measurable information about the particle

* The wavefunction represents the probability amplitude for
finding a particle at a given point in space at a given time

* |\W|? is the probability distribution of the particles

» The integration of the probability of finding the particle over all
space must be 1.

j‘P*‘P dr =1

« The wavefunction of a complete system is commonly
composed of a set of single-particle orbitals.



Time-Independent Schrodinger Equation

When the external potential is independent of time then the wave
function can be written as the product of a spatial part and a time part:

@'(r,t)z‘P(r)T(t)

This results in the time-independent Schrddinger equation:

{—h—zvz +V}‘P(r) = E¥(r)
2m

where E is the energy of the particle.
hZ

Hamiltonian operator:  H—_" vy2 .y
2m



Time-Independent Schrodinger Equation

HY = EY
* Find values of E and functions \p

 Partial differential eigenvalue equations: an operator acts on a
function (the eigenfunction) and returns the function multiplied by a
scalar (the eigenvalue)

One eigenfunction is\
« Example of an eigenvalue equation: y = o

d _r with the eigenvalue
[ operator g dx (y) =y r being equal to a
J

» The Schrodinger equation is a second-order differential equation as it
Involves the second derivative of




Hamiltonian for a Molecule

electrons nuclei electronsnuclei electrons nuclei eZZ Z
B

R ) I

i i A |A i>] ij A>B rAB

« Kkinetic energy of the electrons

» Kkinetic energy of the nuclel

o electrostatic interaction between the electrons and the nuclei
» electrostatic interaction between the electrons

e electrostatic interaction between the nuclei

© H. B. Schlegel



Variational Theorem

The expectation value of the Hamiltonian is the variational
ener o
Y [ Avdr

j YPdr

An approximate wavefunction for a molecular system, when
substituted into the Schrodinger equation, will always yield a
higher energy than the actual energy of the system.

The more precise the wavefunction that is chosen, the closer will
the calculated energy be to the true energy.

The computational method using this principle to obtain
approximations to correct wavefunctions is called the variational
method.

The method is commonly restricted to the ground state, but can
be extended to others provided they are orthogonalized to the
(true) ground state.

— EEV&Y 22 EE

exact

© H. B. Schlegel



Hartree Approximation

« Assume that a many electron wavefunction can
be written as a product of one electron functions

Y(r,r,, 1) = ¢(r)d(r,)(r,) -

 If we use the variational energy, solving the many
electron Schrodinger equation is reduced to
solving a series of one electron Schrodinger
equations

e each electron interacts with the average
distribution of the other electrons

© H. B. Schlegel



Hartree-Fock Approximation

o Pauli exclusion principle: a maximum of two electrons can
occupy an orbital and the spins of the electrons are paired,
l.e. opposed.

e The principle demands: the wavefunction for a many-
electron system must be asymmetric with respect to the
permutation of the space-spin coordinates for every pair of
electrons.

 For a system of N electron in N spin orbitals, can be done by
writing the wavefunction as a Slater determinant

y Y,
¢1(1) ¢1(2) ¢1(n)
50 42 - N Wy, ——

= ¢ - 4| E
o [T B
¢n (1) ¢n (1) o ¢n (n) W, ‘ %

Y

_ 1
~Jn!

© H. B. Schlegel



The Fock Equation

 take the Hartree-Fock wavefunction

=l 4, - 4

e putitinto the variational energy expression
j Y HYdr

j\P Ydr

 minimize the energy with respect to changes in the orbitals

OE/[0¢ =0
« yields the Fock equation: fi¢i = &; ¢i

Effective one electron Hamiltonian for Molecular orbital energy
the electron in the polyelectronic system

© H. B. Schlegel



Fock Operator

F=T+V, +J-K
Coulomb operator (electron -electron repulsion)
electrons

J4, {Zj¢ © ke

exchange operator (purely quantum mechanical -arises from
the fact that the wavefunction must switch sign when you

exchange two electrons)
electrons

Ry =L 49 dde

Both determined by molecular orbital

© H. B. Schlegel



Solving the Fock Equations
|E¢i =&,

* A general approach: Self-consistent Field (SCF)

obtain an initial guess for all the orbitals &
use the current ¢ to construct a new Fock operator

solve the Fock equations for a new set of ¢

> Wwnhoe

If the new ¢ are different from the old ¢, go back to
step 2.

Stop when the one electron wavefunction is converged

© H. B. Schlegel




Linear Combination of Atomic Orbitals

 The most important wave property of atomic orbitals

 LCAO: Wave functions are added and subtracted to give
the wave functions of new orbitals.

* When orbitals on the same atom interact, they give
hybrid atomic orbitals that define the geometry of the
bonds formed.

* When orbitals on different atoms interact, they produce
molecular orbitals that lead to bonding (or antibonding)



LCAO Approximation

Direct solution of the Hartree-Fock equations IS not a practical
proposition for molecules

The most popular strategy is to write each spin orbital as a linear
combination of single electron orbitals (atomic orbital, LCAO):

molecular orbital coefficient

¢i — Z Clﬂ/ijiﬂ

The one-electron orbitals are commonly called basis
functions and often correspond to the atomic orbitals.

The objective is to determine the set of coefficients that gives the
lowest energy of the system =

—— =0

oc,;



Roothaan-Hall Equations

For a closed-shell system with N electrons in N/2 orbitals, the derivation of
the Hartree-Fock equations was first proposed by Roothaan and
independently by Hall (1951).

They recast the Fock equations in matrix form, which can be solved using
standard techniques and can be applied to systems of any geometry.

FC=¢SC
F — Fock matrix
C, — column vector of the molecular orbital coefficients
g — orbital energy
S — overlap matrix

In Fock matrix, The two-electron integrals, i.e. (#1{A0o), may involve up to
four different basis functions («,v,4,0), which may in turn be located at four
different centers.

© H. B. Schlegel



Solving the Roothaan-Hall Equations

choose a basis set
calculate all the one and two electron integrals

obtain an initial guess for all the molecular orbital
coefficients C,

use the current C; to construct a new Fock matrix
solve F C, = ¢ S C,for a new set of C,

If the new C, are different from the old C,, go back to
step 4.

© H. B. Schlegel



Questions: Computational Quantum
Mechanics?

Next: H,*



H,*: A Model System For Chemical Bonding

The first issue we have to deal with is

)
r, r, the multiple nuclei; now we can have
nuclear vibrations and rotations for
the first time. Important digression:

R @ Born-Oppenheimer approximation.

'. \_ VN Rationalization

| for bonding Overall potential can be rationalized in

— terms of competition between 1)

A internuclear repulsion, which blows up
— - as R decreases, and 2) the purely

electronic energy, which is more

el favorable as R decreases.

R=0 R=big
© Matt Jacobson



H,*: Hamiltonian
H = T\ T TL T V\\ T VNB +V.

ee

Kinetic Potential

~ hz 1 o
Iy=——) —V
) 2 ;ma !

a pPro

Ne

=
2m,

N = “nuclear” e = “electronic’ —e ZZ

,j = indices over electrons ""E’ =
o, = Indices over nuclel

/ = nuclear charges © Matt Jacohson

}.—’"



Born-Oppenheimer Approximation

Representation of the complete wavefunction as a product of
an electronic and a nuclear part:

7 (r,R) = % (1; R) %y(R)
where the two wavefunctions may be determined separately
by solving two different Schrodinger equations.

the ratio of electronic to nuclear mass (m/M = 5 x 104) is
sufficiently small and the nuclei, as compared to the rapidly
moving electrons, appear to be fixed

the nuclei are much heavier than the electrons and move
more slowly than the electrons

In the Born-Oppenheimer approximation, we freeze the
nuclear positions, R, and calculate the electronic
wavefunction, ¥,(r;R) and energy E(R)

© H. B. Schlegel



H,*: Born-Oppenheimer Approximation

A =T+ 4V V0

This term is troublesome because it couples
electron motion to nuclear motion. Without i,
we could solve for nuclear eigenfunctions and
electronic eigenfuctions independently.

« The Born-Oppenheimer approximation invokes an adiabatic
separation of the nuclear and electronic motions, on the basis of
the large difference in mass between nuclei and electrons.

« Classically you can envision that the nuclei move much slower than
the electrons, such that the electronic degrees of freedom
“‘Instantaneously” adjust to the nuclear positions.

« Operationally, we make the electronic Hamiltonian parametrically

dependent on nuclear positions. © Matt Jacobson



H,*: Born-OppenheimerApproximation

72 2 2
o, e e

e o V- o
2m r.,

H=7,+T +Vﬂ"+

2m @
This can be

+ added in
Ba Ck tO H2 because it's a

constant for
fixed nuclear
positions.

© Matt Jacobson



H,*: Trial Wavefunction with 2 Basis
Functions

@ =c.f+c,f,
[lefi+eH e fi+ef)
[(e.fs +erf et +euf,)
[ fHf e | fHS, vec, | L1 e [ LY,
et [ fifh+ee. [ ffo+ee | ffi+ei | 1fs

P P
Cl.Hll T CICEHIE T CICEHEI + C'EH'E'E

20 1 1 2
Cl 'Sll T CICZSIE + CICESZI + CE SZZ

© Matt Jacobson



H,*: Trial Wavefunction with 2 Basis
Functions

7 7
I ccH, +cec,H,+cc,H, +c;H,,
T 2o ¥ ¥ 2 oy
’ €11y +6,6,5, +616,5, +635),

Taking advantage of the variational principle, we aim to minimize this expression
with respect to the “variational parameters” ¢, and ¢,, i.e.,

CE,

=0
oc,
CE, _

oc,

These two expressions lead to the following linear equations:

CI(HH _ESll)+CE(H21 _ESm)
CI(HI'Z _ESH)"‘CE (sz _E‘Szz)

0
0

This now becomes a standard problem in linear algebra, which can be

expressed as a matrix problem. © Matt Jacobson



H,*: Matrix Formulation of Eigenvalue

Hll _ESll

Hzl _ ESzl

Problem

Hl” _ESlz

s

H 22 ESzz

(v ~

H,=[fHf,

L

Sy =it

Except for very simple
problems, solving these
equations (essentially root
finding of polynomial equation)
is handled numerically (e.g.,
Householder diagonalization).

© Matt Jacobson



H,*: Variational Treatment

As a trial wavefunction, let's use something very simple, specifically a
sum of 1s orbitals centered around each nucleus (this fits with our
Intuition about bonding arising from orbital overlap):

W=c W, +cl,
y , = 1s orbital centered on nucleus A
¥ , = 1s orbital centered on nucleus B

¢ = coefticients to be determined
The secular determinant is

HAA_ESAA HAB _ESAB Hi{ :J’Ufﬁﬁb’fd:'[ﬁffgﬁ% :HBE
H BA ESBA H BB ESBB

HAA - E HAB - ES S=S,;=95;, :J’UIAUIB
H,-ES H,-E S =S5 -1

H = |w.Hy, = |y,Hy = Hy,

|
-

© Matt Jacobson



A4

H,*: A Closer Look at the Integrals

|v.Hy,

This is just the
Hamiltonian for a H

e atom centered on A,

4 and thus wy, Is an
eigenfunction of it.

he o, 5 |
jvf{—vg - .- v, v,
2m, 7,
A 1
IV{HG’(A_Q WA:WA
b
1 These types of integrals are referred
E, - . v, v, to as “Coul_om“b” integrals, and
7, together with “exchange” integrals
(next slide), play a very important role
Eo -/ in electronic structure calculations.

© Matt Jacobson



AB

H,*: A Closer Look at the Integrals

= |V iy, This is just the

. Hamiltonian fora H
atom centered on B,
and thus yg Is an
elgenfunction of It.

= EOJ.WAWB 1€ |V, V5 This Is an “exchange” integral.

0 © Matt Jacobson




H,*: Solving the Secular Determinant

Hyt 74{K)
E=—44 @=E0+

) 1£S 1£5
v, =y, tv,)
J2(1£5)

’ - . 2R - l
We've expressed the eigenstates in J=e " 1+—
terms of three types of integrals: overlap, R
Coulomb, and exchange. These _ -R(
implicitly depend on R, the internuclear K=e (l +R)
distance. For H,*, these turn out to be R>
analytical: S=e®1+R+ S

© Matt Jacobson



H,*: Eigenfunctions

constructive combination

waves reinforce

each other, resulting

in bonding §
B —— e

nucleus
of the

hydrogen
atom

phase of the orbital |

destructive combination
waves cancel
each other, and
+
no bond forms _

© P.Y. Bruice

| phase of the orbital

1

Bonding results when
two orbitals with the
same phase interact.
When two out-of-phase
atomic orbitals overlap,
they cancel each other
and produce a node
between the nuclei.

|
v, = _ : (WA"'WB) Ww_= _ : (WA_WB)
J2(1+5) J2(1-$)

“‘Bonding” molecular orbital “Anti-Bonding” molecular orbital
Enhanced electron density in Depleted electron density in
internuclear area, helping to internuclear area, deshielding
screen protons from each other. the protons from each other.

© Matt Jacobson



H,*: Eigenenergies
(Potential Energy Curves)

| E_ (anti-bonding)

E. (bonding)

However, the expressions we got for the eigenenergies are non-trivial, and give a
feeling for how electronic structure problems are solved in general

© Matt Jacobson



Questions: H,*?

Next: Basis Sets



Slater-Type Orbitals (STOSs)

The basis sets most commonly used in QM calculations are
composed of atomic functions. An obvious choice would be the Slater
type orbitals.

X1 (F) = (gl?; /77)1/2 exp(—¢y, 1)
25s(F) = (21967 ) “rexp(=¢,, 1 12)

2o (0) = (¢35, 1327 * xexp(=£,, 11 2)

Exact for hydrogen atom

Right asymptotic form

Correct nuclear cusp condition

3 and 4 center two electron integrals cannot be done analytically

It is common in ab initio calculations to replace the Slater orbitals by
functions based upon Gaussian

© H. B. Schlegel



Gaussian-Type Orbitals

g,(F) = (2a3 /7r)”4 exp(—a r?)

9,(r) = (128a5 /7[3)1/4X6Xp(_05 r’) Blue = STO
Pink = Gaussi

0 (F)= (2048057 /97r3)”4x2 exp(—ar?) ink = Gaussian

g,,(F) = (204807 1 z° ' “ xyexp(~a r?)

Radial Dependence of Slater and
Gaussian Basis Functions

These completely dominate modern electronic structure calculations.

They are convenient for computations. All two electron integrals can
be done analytically

They are actually LESS physically reasonable than the STOs
Die off too quickly for large r
No cusp at the origin

© Matt Jacobson



Using Multiple Gaussian Orbitals

Blue = STO
Pink = Gaussian

Solution: Create “contracted Gaussian functions” expressed in terms of
“primitives”. Typically use 3 or 6 Gaussians to approximate STO.

8.6 ]
0.5- STO-3G
8.4
8.2
8.8
B:1
* 0.5 i 1.5 2 2.5 3.5

2.8 I
0.9 STO-6G
0.4
0.3
a2
[ P
’ 9.5 i 1.5 & 8.5 3 3.8

© Matt Jacobson



Basis Sets

Minimal Basis

1 basis function for each atomic orbital

H:1(1s)
C: 5 (1s, 2s, 2p,, 2p,, 2p,)

Split Valence

Problem: Size of orbitals held fixed for all systems.
Solution: Double (or even triple) the number of basis
functions for each orbital, with different orbital exponents

(widths, sometimes called “zeta”). _ -
IMner puncaon

H: 2
Double Zeta: 2 basis functions for each orbital ¢- 10

Triple Zeta: 3 basis functions for each orbital g: 3

15

Split Valence: 1 basis function for each core orbital,

2
but 2 for valence. 9

H:
C:

© Matt Jacobson



Basis Sets

Diffuse Functions

Problem: When dealing with systems with lone pairs, anions, and
excited states, electrons can move far from the nucleus.

Solution: Introduce “diffuse functions”, really large basis functions.
Large size versions of s- and p-type atomic orbitals

Polarization Functions

Problem: Basis functions are isotropic around the nucleus, but
bonding (or hydrogen bonding) introduces anisotropy.

Solution: Introduce “polarization functions” to permit anisotropy. Change shape

For p orbitals, add in d functions (6 of them)

For s orbitals, add in p functions (3 of them)

© Matt Jacobson
Polarization of a p orbital by mixing with a d function



What the Basis Set Names Mean

11)+GF

Each inner shell Triple-zeta split
(core) basis valence basis: One
function composed is contracted
of 6 primitives function of 3

primitives, and the
other two are single
Gaussians

Polarization of Polarization of
p-orbitals with s-orbitals with
d functions p functions

© Matt Jacobson



Correlation Energy

Hartree-Fock, at least with a sufficiently large basis set, can predict lots of
properties with reasonable accuracy, e.g., equilibrium structures and relative
energies. But there are some notable failures ...

Example: Dissociation energies

Molecule | Experiment HF
N, 9.9eV 5.3eV
F, 1.6 eV -14 eV

« Remember, HF only treats electron correlation in an average, not
instantaneous sense.
 |n fact, the motions of electrons are correlated and they tend to
avoid each other, giving rise to a lower energy. Their motion must
be “correlated”
« For a given basis set, the correlation energy is:
E =E, . —E.

correlation exact

© Matt Jacobson



Hartree-Fock+ClI

« There are many ways in which correlation effects can
be incorporated into an ab initio molecular orbital
calculation.

* A popular approach is configuration interaction (Cl), in
which excited states are included in the description of an
electronic state.

* The overall wavefunction is a linear combination of the
ground and excited-state wavefunctions.



Configuration Interaction

determine CI coefficients using the variational principle
Y=Y, +Zta\1ﬂ+2tab\yab+ D WS +

ijab ijkabc

jqf HYd 7

j\{f Ydr

CIS — include all single excitations

— useful for excited states, but not for correlation of the ground state
CISD - include all single and double excitations

— most useful for correlating the ground state

— 0?V? determinants (O=number of occ. orb., V=number of unocc. orb.)
CISDT - singles, doubles and triples

— limited to small molecules, ca O3V?3 determinants
Full CI — all possible excitations

— ((O+V)/O!IVNH? determinants

— exact for a given basis set

— limited to ca. 14 electrons in 14 orbitals

minimize E = with respect to t
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Perturbation Theory Methods

Perturbation theory works on the idea that if we know the answer to one problem we can work out an answer
to a closely related problem. Let us suppose that we know the solution of the Schrédinger equation for one
problem, i.e. for one Hamiltonian operator. If we have a problem with a Hamiltonian operator which is fairly
close to the first one, we treat the difference between the Hamiltonian operators as a small perturbation to the
first solution. We can expand the solution to the second problem in terms of the first solution and terms in
various powers of the perturbation.

A particularly successful application to molecules and the correlation problem goes back to Mgller and Plesset
in 1933. This is now the MPn method. The Hartree-Fock solution is an approximate solution to the exact
Hamiltonian operator. It is however an exact solution to an approximate Hamiltonian operator which is the sum
of Fock operators for each electron. We treat the perturbation as the difference between the exact Hamiltonian
operator and this sum of Fock operators. We then treat the Hartree-Fock solution as the zero order term and
evaluate terms in powers of the perturbation. The zero-order energy is the sum of orbital energies. The first
order correction to the energy is just the two-electron integrals that correct the sum of orbital energies to give
the normal Hartree-Fock energy. The first important correction is the second order term and this leads to MP2.
MP2 is relatively economic to evaluate and gives a reasonable proportion of the correlation energy. Higher
order terms become more and more expensive. MP3 is commonly used but does not seem to give much
improvement over MP2. MP4, with some terms removed to speed things up, is often used. MP4 gives
reasonable results but it is much more expensive than MP2. Higher order terms than 4'th order are rarely
evaluated.

Code exists in various programs to calculate optimized geometries with analytic first derivatives of the energy
with respect to atomic coordinates at MP2 level. MP2 is thus often the highest level of theory where optimized
geometries are obtained. Similarly analytic second derivatives are available and harmonic frequencies are
also evaluated at the MP2 level.



Mgller-Plesset Perturbation Theory
choose H, such that its eigenfunctions are determinants of molecular

orbitals
— Z F

expand perturbed wavefunctions in terms of the Hartree-Fock
determinant and singly, doubly and higher excited determinants

a ab\gsab abc abc
Wo=> alWr+ ) alt W + Y an Wit +
ia ijab ijkabc
perturbational corrections to the energy

Eve = By +E, = [ WoH Wodz + [ WV dr

A [P, VPPdr]?
Eye, =Eue +E, =B +ILI’0VT1dT =By - Z j |
e Ea +E,— & — &
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Mgaller-Plesset Basis Sets

Basic idea: Treat instantaneous electron correlation as a perturbation to the HF-
SCF solutions. In other words, the perturbation is the difference between the
exact 1/ry, coupling and the SCF solution. Much more efficient than full CI!

The HF-SCF, with a large basis set, is in fact the correct 1st-order perturbation
theory result for electron correlation. So the first new term is the 2nd order
perturbation theory result. This is “MP2".

There are also higher order theories, i.e., MP3, MP4. As with all perturbation
theory, higher order does not guarantee higher accuracy. [And in fact, going to
higher and higher order is not at all guaranteed to converge on the right answer ]
Need a good basis set! Frequently used basis sets include the Dunning sets:

cc-pvVDZ

(aug) CC ‘“polarization
“correlation valence Triple Zeta”
consistent”

These have a little different philosophy: develop contractions by SCF
calculations on atoms, thus building some electron correlation into basis set.
Frozen core approximation often invoked for MP calculations as well.

© Matt Jacobson



Questions: Basis Sets?

Next: Semi-Empirical Methods



Semi-Empirical MO Methods

the high cost of ab initio MO calculations is largely due to
the many integrals that need to be calculated (esp. two
electron integrals)

semi-empirical MO methods start with the general form of
ab initio Hartree-Fock calculations, but make numerous
approximations for the various integrals

many of the integrals are approximated by functions with
empirical parameters

these parameters are adjusted to improve the agreement
with experiment

Intermediate between real (ab initio) QM and MD force
field approaches in terms of speed and accuracy



Eliminating HF Integrals

The rate-limiting step in HF is evaluating the N“ different integrals of the form:
/ \ Commonly used
”f f ( )f ( ) \(\rs*‘fu)/ shorthand notation

« This is a two electron integral (representing the electron repulsion), but it
involves up to four basis functions: r, s, t, u.

« |f all four basis functions are on the same atom, it is a 1-center integral.

« |If the basis functions are on 2 different atoms, it is a 2-center integral, etc.

« The 3- and 4-center integrals are the most difficult to evaluate, and are also
the most copious. Semi-empirical methods eliminate these entirely.
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Zero Differential Overlap (ZDO)

e two electron repulsion integrals are one of the most
expensive parts of ab initio MO calculations

(uv120)= [ 2,020~ 2@z, @drdr,

12

 neglect integrals If orbitals are not the same

(uv|io)=(uul A1) 6, J,,
where o, =1if u=v,6,, =0If u+#v

e CNDO, INDO and MINDQO semi-empirical methods
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Neglect of Diatomic Differential Overlap
(NDDO)

fewer integrals neglected

(uv120)= [ 2,020~ 2@ z,@drdz,

12

neglect integrals if u and v are not on the same atom or
A and o are not on the same atom

Integral approximations are more accurate and have
more adjustable parameters than in ZDO methods

parameters are adjusted to fit experimental data and ab
Initio calculations

MNDO, AM1 and PM3 semi-empirical methods
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Semi-Empirical Family Tree

Huckel
zero Pariser-Parr-Pople (PPP) Extended Huckel
differential
overlap CNDO
intermediate /
neglect of INDO —
differential overlap T —
— MINDO Programs
| MOPAC

neglect of diatomic \ppo_
differential overlap [ ' Spartan
- MNDO P

\ Hyperchem
Gaussian
AM1 MNDO-d

—
—
" —
—
—

The family tree PM3  AMTBCC SAMH
relationships shown here

are approximate. Other
methods also exist. PM5
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Semiempirical Methods

Advantages:
e Cheaper than ab initio and DFT

e Only truly viable QM like method for entire proteins, but
even small proteins are barely within reach

« Can be reparametrized for each system / process

Disadvantages:

* H-bond strengths often incorrect (off by several kcal/mol)
« Still expensive



Questions: Semi-Empirical Methods?

Next: Density Functional Theory



Density Functional Theory

 DFT is an approach to solve the electronic structure of
atoms and molecules which has enjoyed an increasing
Interest since the late 1980s and 1990s

* DFT replaces the wave function with the electron
density as the fundamental unknown:

p(r)= [dry-dry *(r---r, )y (r---r,)
\ Wavefunction — 3n coordinates
Charge Density — 3 coordinates
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DFT Functionals

Hohenberg and Kohn: the ground state energy and other properties
of a system were uniguely defined by the electron density.

@ DFT expression for the energy: \

ELp)=T[p1+ [V + [P K [ ]
/‘

/ |r—r']
Kinetic energy \ £ & Tepulsian /

e-/nuclei attraction  Exchange / Correlation

[] denotes functional — take function and return a number
For example, a definite integral is a type of functional...

ILf1= [f(r)dr
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So How Can This Work?

@ Ky is UNKNOWN!! (And is unlikely to ever be
known in a form which is simpler than solving the
electronic Schrodinger equation)

# T is also unknown, but can be approximated if the
density is associated with a wavefunction.

« Kohn and Sham introduced the orbital concept into DFT
VZ
T[P]: Z_[Wi (ﬂ[‘?}ﬂi (r)dr

* they wrote the density of the system as the sum of the
square moduli of a set of one-electron orthonormal orbitals.

p(r):Z‘Wi (r)(z



DFT and HF

e Need to define K, (approximated in various ways)
e Exactly the same ansatz is used as HF — the only
difference is in the Fockian operator

Ao (e) = ZAG) | 220, (6)-£, (o)

jeocc

ﬁKS(cMO)=Z£(i)+( 5 zj,.(cw)]”e_\,c[p,vp]

Jeoce

Same SCF procedure as in HF since the equation is
nonlinear...

In most DFT programs, the Kohn-Sham orbitals are expressed
as linear combination of atomic-centered basis functions:

r) = chi¢v



Behavior of DFT and HF

By definition, HF has no electron correlation
this implies more serious errors
for stretched/distorted bonds, i.e. disfavors
overcoordination
e Pure DFT overestimates correlation
Preference for overcoordination
e Hence success of hybrid functionals which add exchange
to DFT, e.g. B3LYP

e Hartree-Fock alone is not very useful — barriers are usually
overestimated by more than DFT underestimates
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DFT: Exchange Correlation Functions

1. LDA: Local density approximation. Basic idea is to approximate E, [p]
using the exchange and correlation energy of “jellium”™. a homogeneous
electron gas with density p (but electrically neutral). Valid if electron
density changes slowly with position. Not sufficiently accurate for most
purposes.

2 Gradient-corrected functionals: Most modern functionals fall into this
category. Basic idea: make the functional depend not only on p but also

Vv

The gradient part accounts for rate of change in density, which is ignored
in LDA. Also called a “nonlocal” functional.

+ Most important gradient-corrected exchange functional due to Becke
(1988): B88. Uses LDA but adds in new complicated term involving
gradient and an empirical parameter, fit to HF exchange energies.

+ Most important gradient-corrected correlation functional due to Lee-
Yang-Parr: LYP.

» Put them together and you get “BLYP".

3. Hybrid functionals. Calculate exchange integrals explicitly as in HF, and
then combine this term with functionals, e.g., “B3LYP” (“*3"=3 parameters).
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Problems with DFT

e Is DFT a panacea? No!

e Even the best DFT often yield errors of 5 kcal/mol

e No hierarchy for improvement
eDifferent functionals = Different answers

e Poor for proton transfer and bond rearrangment
e Tendency to overcoordinate...
e Extreme example: LDA predicts no proton

transfer barrier in malonaldehyde

101 172

122 _H._ HE

o i 136 O/ -‘-..012?
| | instead of | IR
CH. .CH CH CH
ho: il 1 .3?\CH .45
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Questions: Density Functional Theory?



Resources and Further Reading

WWW:

— Glossary of terms used in theoretical organic chemistry:
http://www.iupac.org/reports/1999/7110minkin

— Online courses:
http://www.chem.wayne.edu/~hbs/chm6440
http://francisco.compbio.ucsf.edu/~jacobson/biophys206/biophys 206 _links.htm
— Atomic orbitals and molecular orbitals:
http://www.cem.msu.edu/~reusch/Virtual Text/intro3.htm

http://winter.group.shef.ac.uk/orbitron
Books:
“Molecular Modeling-Principle and Application”, Andrew R. Leach, Chapter 2, 3
“Organic Chemistry”, Paula Yurkanis Bruice, Chapter 1
“Organic Chemistry”, L.G.Wade, Jr. Chapter 2
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