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Free Energy. When one is concerned with changes in the state of a 
system, a full description requires knowledge of what is known as 
the free energy, including the Helmholtz free energy and the Gibbs 
free energy.

Helmholtz free energy (F): a function of the internal energy Eint, 
the absolute temperature  T, and the entropy S.

F = Eint – TS
Gibbs free energy (G) : Helmholtz free energy plus an additional 
term that depends on pressure and volume 

G = F + PV = Eint – TS + PV

© C.-M. Chen

Review of Thermodynamics 



The general rule is that a system can spontaneously alter its status if 
the change results in a lowering of the free energy. Therefore the 
equilibrium condition is that the free energy of the system is 
minimized.

For a mechanically isolated system at constant temperature (no work) 

F ≤ 0 ( = holds at equilibrium )

For a system kept at constant temperature and pressure

G ≤ 0         ( = holds at equilibrium )
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Equilibrium Conditions



Internal En. (Eint), Enthalpy (H), Helmholtz Free En. (F), Gibbs Free En. (G)

H = Eint +PV, F = Eint-TS, G = Eint-TS+PV
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Maxwell Relations:
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Thermodynamic Potentials



Consider an isolated ideal gas system consisting of two  compartments of 
volume V1 and  V2, respectively. The boundary between these two compartments 
is free to move. Find the equilibrium condition.

So: For an isolated system, the equilibrium condition is  
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Principle of Minimizing Free Energy



Consider two atoms in equilibrium 

Ekin = 0

Epot = 0

Ekin = 0       Epot > 0

Ekin > 0       Epot = 0
Ekin = 0       Epot > 0
Ekin > 0       Epot = 0

Ekin = 0       Epot > 0

Small perturbation
t = 0
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Internal Energy: Eint = Ekin + Epot



For a system of N particles at temperature T
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kB = 1.38×10-23JK-1：Boltzmann constant

3N degrees of freedom

Each degree of freedom: ½ kB T
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Equipartition



S = kB lnΩ Ω：number of available states

a state involves both the positions and the velocities of all the atoms in the 
system.

Example: Consider a harmonic oscillator; Its Hamiltonian is

( ) Ekq
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phase space 

q

p

E

E+ ∆E

p = momentum   q = position

m
k

Total available area in phase space = ∆W

Unit area in p-q phase space due to uncertainty principle is h

Number of states:        Ω = ∆W h
For a system of N particles in 3-D space

Ω (E,V,N) = ∆W(E) h3N
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Entropy



A container is divided into two parts by a barrier that has a small hole in it. The 
gas molecules are indistinguishable.

(a) (b)
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Consider a system that is described by a set of states 1, 2, 3, ...., i,....

with  corresponding energies ε1, ε2, ε3, … εi,… Let the number of 

particles in state 1 be n1, in state 2 be n2, …and so on.

Total number of particles:

Number of different ways: 
......!!.....!

!
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Maximizing entropy with the constraints of fixed particle number and total energy, 
we get
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Boltzmann Distribution
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Define F = -NkBT ln Q what is F？
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F is the Helmholtz free energy! 
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Free Energy and Partition Function



reaction flux Jc=k2[C]   ,              JA=JB=k1[A][B] 

first order second order 

chemical potential of a given component

iii aRT ln0 += µµ chemical activity [ ]ia ii γ=
A more general reaction is DCBA DCBA νννν +⇔+
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the change in the Gibbs free energy
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Reaction Kinetics



Statistical Ensembles

• Classical phase space has 6N variables (pi, qi) and a Hamiltonian function 
H(q,p,t).
• We may know a few constants of motion such as energy, number of particles, 
volume... 
• Ergodic hypothesis: each state consistent with our knowledge is equally
“likely”; the microcanonical ensemble.
• Implies the average value does not depend on initial conditions.
• A system in contact with a heat bath at temperature T will be distributed 
according to the canonical ensemble:   

exp(-H(q,p)/kBT )/Q
• The momentum integrals can be performed. 
• Are systems in nature really ergodic? Not always! 

© D. Ceperley



Ergodicity
• Fermi- Pasta- Ulam computer experiment (1954) 
• 1-D anharmonic chain: V= Σ[(q i+1-q i)2+α (q i+1-q i)3]

• The system was started out with energy with the lowest energy mode. 
Equipartition would imply that the energy would flow into the other 
modes.

• Systems at low temperatures never come into equilibrium. The energy 
sloshes back and forth between various modes forever. 

• At higher temperature many-dimensional systems become ergodic. 
• Field of non-linear dynamics devoted to these questions.

© D. Ceperley



Let us say here that the results of our computations were, 
from the beginning, surprising us. Instead of a continuous 
flow of energy from the first mode to the higher modes, all of 
the problems show an entirely different behavior. … Instead 
of a gradual increase of all the higher modes, the energy is 
exchanged, essentially, among only a certain few. It is, 
therefore, very hard to observe the rate of “thermalization”
or mixing in our problem, and this was the initial purpose of 
the calculation.

Fermi, Pasta, Ulam (1954)

Ergodicity



• Equivalent to exponential divergence of trajectories, or sensitivity to initial 
conditions. (This is a blessing for numerical work. Why?)

• What we mean by ergodic is that after some interval of time the system is 
any state of the system is possible.

• Time average = ensemble average.
• Example: shuffle a card deck 10 times. Any of the 52! arrangements could 

occur with equal frequency.
• Aside from these mathematical questions, there is always a practical 

question of convergence. How do you judge if your results converged? 
There is no sure way. Why? Only “experimental” tests.
– Occasionally do very long runs.
– Use different starting conditions.
– Shake up the system.
– Compare to experiment.

Ergodicity

© D. Ceperley



Statistical Ensembles

• (E, V, N)  microcanonical, constant volume
• (T, V, N)  canonical,  constant volume
• (T, P, N)  constant pressure
• (T, V, µ)   grand canonical

• Which is best? It depends on:
– the question you are asking
– the simulation method: MC or MD (MC better for phase transitions)
– your code.

• Lots of work in last 2 decades on various ensembles.

© D. Ceperley



Another Definition of Simulation

• What is a simulation?
An internal state  “S”
A rule for changing the state  Sn+1  =  T  (Sn)
We repeat the iteration many times.

• Typically systems are ergodic: there is a correlation time T. For times 
much longer than that, all non-conserved properties are close to their 
equilibrium value.  Used for:
– Warm up period.
– To get independent samples for computing errors.

© D. Ceperley



Monte Carlo Simulation

• Invented in Los Alamos in 1944 and named after the famous 
casino.

• A way of doing integrals by using random numbers:

P(R)=sampling function

Convergence guaranteed by 
the Central Limit Theorem

• If P(R)∝f(R) then variance→0

• faster way of doing integrals for dimensions > 4
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Markov Processes

• Markov process is a random walk through phase space: 
s1⇒s2 ⇒ s3 ⇒ s4 ⇒…

• If it is ergodic, then it will converge to a unique stationary distribution 
• Detailed balance: Π (s) P(s ⇒s’) = Π (s’)P (s’ ⇒s ).

Rate balance from s to s’.
• We achieve detailed balance by rejecting moves. Acceptance 

probability is:

T( ' ) ( ')min 1,
T( ') ( )

s s s
s s s

⎡ ⎤→ Π
⎢ ⎥→ Π⎣ ⎦
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“Classic” Metropolis Method
Metropolis Rosenbluth Teller (1953) method:
• Move from s to s’ with  probability T(s→s’)= constant
• Accept with move with probability:

a(s→s’)= min [ 1 , exp ( - (E(s’)-E(s))/kBT ) ]

• Repeat many times

Given ergodicity, the distribution of s will be the canonical distribution:

Π(s) = exp(-E(s)/kBT)/Q

© D. Ceperley



Optimizing the Moves

• Any transition rule is allowed as long as you can go anywhere in
phase space with a finite number of them. (ergodic)

• Try to find a  T(s ⇒ s’) ≈ Π (s’). If you can the acceptance ratio 
will be 1.

• We can use the forces to push the walk in the right direction. 
Taylor expand about the current point.

V(r)=V(r0)-F(r)(r-ro)
• Set T(s ⇒ s’) ≈ exp[ -β(V(r0)- F(r0)(r-ro))]
• Leads to Force-Bias Monte Carlo
• Related to Brownian motion (Smoluchowski Eq.)

© D. Ceperley



Other Ensembles in MC

• Monte Carlo can handle discrete and continuous variables at the 
same time.  

• This allows us to treat other ensembles.  For example consider 
the (µ, V, T) ensemble. The number of particles is variable. 

• We consider moves that change the number of particles by 
adding or subtracting 1 and accepting or rejecting the move.

© D. Ceperley



Monte Carlo Simulation of C-Peptide
(a) X-ray structure of C-peptide

(b) the lowest conformations of C-
peptide obtained from a 
multicanonical Monte Carlo run 
of 1,000,000 MC sweeps in gas 
phase

(c) and in aqueous solution represented 
by the distance-dependent 
dielectric funtion.

© Y. Okamoto



C-peptide, residues 1-13 of ribonuclease A
structure of the enzyme exhibits a nearly 3-turn α-helix 
simulations predicted a similar α-helix in the lowest-
energy conformation in aqueous solution 
conformation of the α-helix is reproduced in the 
simulations

© Y. Okamoto

Monte Carlo Simulation of C-Peptide



Monte Carlo Simulation of BPTI

(a) X-ray structure of BPTI(16-36)

(b) the lowest conformations of 
BPTI(16-36) obtained from a 
multicanonical Monte Carlo run of 
1,000,000 MC sweeps in gas phase

(c) and in aqueous solution 
represented by a solvation term 
proportional to the solvent-
accessible surface area.

© Y. Okamoto



α-helix and β-sheets from residues 16-36 of bovine 
pancreatic trypsin inhibitor (BPTI) studied
simulated structures are rather different from x-ray 
structures of the entire BPTI
but agreement between simulation and NMR experiment 
on fragment corresponding to residues 16-36

© Y. Okamoto

Monte Carlo Simulation of BPTI



MC vs. MD

• MD can compute dynamics. MC has a kinetics under user 
control, but dynamics is not necessarily physical. MC dynamics  
is useful for studying long-term diffusive process.  

• MC is simpler: no forces, no time step errors and a direct 
simulation of the canonical ensemble.

• In MD you can only work on how to make the CPUtime/physical 
time faster. In MC you can invent better transition rules and 
ergodicity is less of a problem. MD is sometimes very effective 
in highly constrained systems.

• MC is more general, it can handle discrete degrees of freedom 
(e. g. spin models, quantum systems), grand canonical 
ensemble...

© D. Ceperley



“An intelligent being who, at a given moment, knows all the 
forces that cause nature to move and the positions of the 
objects that it is made from, if also it is powerful enough to 
analyze this data, would have described in the same 
formula the movements of the largest bodies of the 
universe and those of the lightest atoms. Although 
scientific research steadily  approaches the abilities of this 
intelligent being, complete prediction will always remain 
infinitely far away.”

Laplace, 1820



Resources and Further Reading
Textbook:
Schlick Chapter 11

WWW Paper on Monte Carlo:
Yuko Okamoto, ‘Ab Initio Predictions of Three-Dimensional Structures of Proteins by 
Monte Carlo Simulations: 
http://citeseer.ist.psu.edu/cache/papers/cs/12824/http:zSzzSzwww.scri.fsu.eduzSzMCatSC
RIzSzproceedingszSzOkamotozSzokamoto.pdf/okamoto99ab.pdf

Textbook on Statistical Mechanics, Thermodynamics, Free Energy, etc:
McQuarrie, Statistical Mechanics, 1976
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