
Introduction to C++ Part I
For students of HI 5323
“Image Processing”

Willy Wriggers, Ph.D.
School of Health Information Sciences

http://biomachina.org/courses/processing/02.html

T H E U N I V E R S I T Y of T E X A S

H E A L T H S C I E N C E C E N T E R A T H O U S T O N

S C H O O L of H E A L T H I N F O R M A T I O N S C I E N C E S

History

• Merges notions from Smalltalk and notions from C

• The class concept was borrowed from Simular67

• Developed by Bjarne Stroustrup at Bell Labs

• Bell Lab's internal standard language for system programming

• Keeps C's original executing speed while enabling object-oriented
programming (OOP).

• C++ is a strongly typed language (provides strong guarantees about run-time
behavior)

History of C and C++
• C evolved from two other programming languages, BCPL and B

• ANSI C
Established worldwide standards for C programming

• 1980: “C with Classes”
Improve program structure (Simula67)
Maintain run-time efficiency
Support rather than enforce effective programming techniques

• 1985: C++ 1.0

• 1995: Draft standard

• C++ “spruces up” C
Provides capabilities for object-oriented programming
- Objects are reusable software components that model things in the real world
- Object-oriented programs are easy to understand, correct and modify

C++: ISO/IEC 14882

• 1998: International standardization
New type bool
static_cast, dynamic_cast etc
Run-Time Type Information (RTTI)

• “Standard Library” (STL)
Generic containers
Generic algorithms

• Compatibility with ANSI C

• Greater Portability

C versus C++

Claimed advantages:

1. Faster development time (code reuse)

2. Creating/using new data types is easier

3. Memory management: easier more transparent

4. Stricter syntax & type checking => less bugs

5. Data hiding easier to implement

6. OO concepts in C++

© Jacques de Wet, http://wwwcascina.virgo.infn.it/DataAnalysis/Noise/doc/Manuals/C++Course.ppt

Procedural Programming

• The original programming paradigm is

• The focus is on the processing - the algorithm needed to
perform the desired computation
• Languages support this paradigm by providing facilities for
passing arguments to functions and returning values from
functions
• The literature related to this way of thinking is filled with
discussion of ways to pass arguments, ways to distinguish
different kinds of arguments, different kinds of functions, etc.

Decide which procedures you want;
use the best algorithms you can find

© 2001 Ilhwan Choi, http://oopsla.snu.ac.kr/c++/cpplecture/third_cover.html

Modular Programming

• The emphasis in the design of programs has shifted from the
design of procedures and toward the organization of data

This paradigm is also known as data-hiding principles

Decide which modules you want;
partition the program so that data is hidden in modules

a set of related procedures
with data they manipulate

© 2001 Ilhwan Choi, http://oopsla.snu.ac.kr/c++/cpplecture/third_cover.html

Object-Oriented Programming
• Objects

Reusable software components that model real world items
Meaningful software units
- Date objects, time objects, paycheck objects, invoice

objects, audio objects, video objects, file objects, record
objects, etc.

- Any noun can be represented as an object
It is claimed that this is more understandable, better organized
and easier to maintain than procedural programming
Favors modularity

© 2001 Ilhwan Choi, http://oopsla.snu.ac.kr/c++/cpplecture/third_cover.html

Data Abstraction

• User-Defined Types
C++ allows a user to directly define types that behave in
(nearly) the same way as built-in types
Such a type is often called an abstract data type
The programming paradigm is:

More on this next session!

Decide which types you want;
provide a full set of operations for each type

© 2001 Ilhwan Choi, http://oopsla.snu.ac.kr/c++/cpplecture/third_cover.html

C++ OOP Features

• C++ is a hybrid language (can program in procedural or OO fashion or both)

• Concepts for Object Orientation
Encapsulation (Data-hiding)
Inheritance
Polymorphism
Ability to be dynamic (concept of objects)

• (see next session)

© Jacques de Wet, http://wwwcascina.virgo.infn.it/DataAnalysis/Noise/doc/Manuals/C++Course.ppt

A Typical C++ Environment

Running C++ Programs:

1. Edit

2. Preprocess

3. Compile

4. Link

5. Load

6. Execute

Loader

Primary
Memory

Program is created in
the editor and stored
on disk.

Preprocessor program
processes the code.

Loader puts program
in memory.

CPU takes each
instruction and
executes it, possibly
storing new data
values as the program
executes.

Compiler
Compiler creates
object code and stores
it on disk.

Linker links the object
code with the libraries,
creates a.out and
stores it on disk

Editor

Preprocessor

Linker

CPU

Primary
Memory

.

.

.

.

.

.

.

.

.

.

.

.

Disk

Disk

Disk

Disk

Disk

© 2000 Prentice Hall, from http://www.math.uncc.edu/~jkawczak/classes/math5040/dd/chapter01.ppt

Getting Started
The C++ Environment

C++
Source Files

C++
Object

Files (.o)

g++
Compiler

Your C++ Working
Directory

Header-files.h
Source-files.cpp

.h files contain the class interfaces

.cpp files contain the class
implementation details

The program entry point
is the main() function that
must be defined in a .cpp file.

>g++ -c filename.cpp

One or more compilation-only steps.
Each successful compilation produces
a .o file. Only .cpp files are compiled.
.h files will be compiled when a
#include statement is processed.

>g++ -c filename.cpp >& filename.msg

This illustrates how to redirect stderr to a file to save compilation
messages.

>g++ mainfile.o file1.o file2.o … -o executable-name

Compile the main file, link .o files, and produce an executable.

© 2005 David A. Workman, www.cs.ucf.edu/~workman/cop4232/Cpp-Fall05.ppt

C++ Program Structure

Main()

Header.h

Implementation.cpp

Class declaration

Namespace declaration

Class definition

Namespace definition

© 2005 David A. Workman, www.cs.ucf.edu/~workman/cop4232/Cpp-Fall05.ppt

Make Files
makefile for foo_to_v5d.c conversion program (this is a comment)
PROGRAM = lab_2
CFLAGS = -c
CC = g++
LIBS = -lm
OBJECTS = $(PROGRAM).o file1.o file2.o … filek.o

$(PROGRAM): $(OBJECTS)
$(CC) $(OBJECTS) $(LIBS) -o $(PROGRAM)

$(PROGRAM).o: $(PROGRAM).cpp
$(CC) $(CFLAGS) $(PROGRAM).cpp >& $(PROGRAM).err

file1.o: file1.cpp file1.h
$(CC) $(CFLAGS) file1.cpp

...
filek.o: filek.cpp filek.h

$(CC) $(CFLAGS) filek.cpp

introduces comments
identifier = declarations

Identifier : introduces a rule
File1 : File2

command

To "run" a makefile :
>make
or
>make -f makefile-name

identifier = declarations

© 2005 David A. Workman, www.cs.ucf.edu/~workman/cop4232/Cpp-Fall05.ppt

Makefile: Example

lab3: conversationsim.o apperrors.o IOMgmt.o simmgmt.o simmodels.o
g++ -lm -o lab3 conversationsim.o apperrors.o IOMgmt.o simmgmt.o simmodels.o

apperrors.o: apperrors.cpp apperrors.h
g++ -c apperrors.cpp

IOMgmt.o: IOMgmt.cpp IOMgmt.h
g++ -c IOMgmt.cpp

simmgmt.o: simmgmt.cpp simmgmt.h
g++ -c simmgmt.cpp

simmodels.o: simmodels.cpp simmodels.h
g++ -c simmodels.cpp

conversationsim.o: conversationsim.cpp simmodels.h simmgmt.h
g++ -c conversationsim.cpp

executable Link in
Math library Name of the

executable

Names of object files
needed to create executable

© 2005 David A. Workman, www.cs.ucf.edu/~workman/cop4232/Cpp-Fall05.ppt

Review

• What is a computer program?
• Where are programs entered?
• Where are programs stored after they are typed into the computer?
• What is a compiler?
• What is a linker?
• Where do the statements of your programs reside while your program is

executing?
• What numbering system do computers use?
• Explain how the letter A will look in the main memory of the computer.
• How does the computer keep track of data values or programming statements

while in main memory?
• What steps does a programmer need to take before they start to write a C++

program?

© 2003 Pearson Education, from http:// www.eecs.lehigh.edu/~kalafut/cse17/Introduction.ppt

A Sample C++ Program
#include <iostream.h>

int main()

// total pay for employee

{

double rate;

int hours;

double pay;

cout << "Enter the hourly rate for the employee ";

cin >> rate;

cout << "Enter the number of hours: ";

cin >> hours;

pay=rate*hours;

cout << "Total pay is "<< pay << endl;

return 0;

}

© 2003 Pearson Education, from http:// www.eecs.lehigh.edu/~kalafut/cse17/Introduction.ppt

Program Layout

To begin the main function of the program

int main()

{

• To end the main function

return 0;

}

Main function ends with a return statement

© 2003 Pearson Education, from http:// www.eecs.lehigh.edu/~kalafut/cse17/Introduction.ppt

Includes

Include Directives

#include <iostream>

Tells compiler where to find information about items
used in the program
iostream is a library containing definitions of cin
and cout

© 2003 Pearson Education, from http:// www.eecs.lehigh.edu/~kalafut/cse17/Introduction.ppt

• Can use C form of comments /* a comment */

• Can also use // form:
when // encountered, remainder of line ignored
works only on that line

Comments

Variable Declaration
• Variables are declared before they are used

Typically variables are declared at the beginning of
the program
Statements (not always lines) end with a semi-colon

• Variable declaration line

double rate;

int hours;

double pay;

int means that the variables represent integers
double means the variables represent a number with a fractional
component

© 2003 Pearson Education, from http:// www.eecs.lehigh.edu/~kalafut/cse17/Introduction.ppt

cout

Program statement

cout << "Enter the hourly rate for the employee ";

cout (see-out) used for output to the monitor

“<<“ inserts “Enter the …for the employee” in the data
bound for the monitor

Think of cout as a name for the monitor
- “<<“ points to where the data is to end up

© 2003 Pearson Education, from http:// www.eecs.lehigh.edu/~kalafut/cse17/Introduction.ppt

cin

Program statement

cin >> rate;

cin (see-in) used for input from the keyboard

“>>” extracts data from the keyboard

Think of cin as a name for the keyboard
- “>>” points from the keyboard to a variable where the data is stored

© 2003 Pearson Education, from http:// www.eecs.lehigh.edu/~kalafut/cse17/Introduction.ppt

Arithmetic

• Program statement

pay=rate*hours;

Performs a computation
‘*’ is used for multiplication
‘=‘ causes pay to get a new value based on
the calculation shown on the right of the equal sign

© 2003 Pearson Education, from http:// www.eecs.lehigh.edu/~kalafut/cse17/Introduction.ppt

Text Formatting

• Compiler accepts almost any pattern of line
breaks and indentation

• Programmers format programs so they
are easy to read

Place opening brace ‘{‘ and closing brace ‘}’
on a line by themselves
Indent statements
Use only one statement per line

© 2003 Pearson Education, from http:// www.eecs.lehigh.edu/~kalafut/cse17/Introduction.ppt

Testing and Debugging
• Bug

A mistake in a program

• Debugging
Eliminating mistakes in programs
Term used when a moth caused a failed relay on the Harvard Mark 1
computer. Grace Hopper and other programmers taped the moth in
logbook stating: “First actual case of a bug being found.”

© 2003 Pearson Education, from http:// www.eecs.lehigh.edu/~kalafut/cse17/Introduction.ppt

Program Errors
• Syntax errors

Violation of the grammar rules of the language
Discovered by the compiler
- Error messages may not always show correct location of

errors

• Run-time errors
Error conditions detected by the computer at run-time

• Logic errors
Errors in the program’s algorithm
Most difficult to diagnose
Computer does not recognize an error

© 2003 Pearson Education, from http:// www.eecs.lehigh.edu/~kalafut/cse17/Introduction.ppt

• Variables are like small blackboards
We can write a number on them
We can change the number
We can erase the number

• C++ variables are names for memory locations
We can write a value in them
We can change the value stored there
We cannot erase the memory location
- Some value is always there

Variables and Assignments

© 2003 Pearson Education, from http:// www.eecs.lehigh.edu/~kalafut/cse17/Introduction.ppt

• Variables names are called identifiers

• Choosing variable names
Use meaningful names that represent data to be stored
C++ is a case-sensitive language!
First character must be
- a letter
- the underscore character

Remaining characters must be
- letters
- numbers
- underscore character

Identifiers

© 2003 Pearson Education, from http:// www.eecs.lehigh.edu/~kalafut/cse17/Introduction.ppt

• Keywords (also called reserved words)
Are used by the C++ language
Must be used as they are defined in
the programming language
Cannot be used as identifiers

Keywords

© 2003 Pearson Education, from http:// www.eecs.lehigh.edu/~kalafut/cse17/Introduction.ppt

• Immediately prior to use

(new in C++)

int main()
{

…
int sum;
sum = score1 + score 2;
…
return 0;

}

At the beginning
(C style)

int main()
{

int sum;
…
sum = score1 + score2;
…

return 0;
}

Before use, variables must be declared
Two locations for variable declarations

Declaring Variables

© 2003 Pearson Education, from http:// www.eecs.lehigh.edu/~kalafut/cse17/Introduction.ppt

• An assignment statement changes the value of a variable
pay=rate*hours;
- pay is set to the quotient of rate and hours

Assignment statements end with a semi-colon

The single variable to be changed is always on the left
of the assignment operator ‘=‘

On the right of the assignment operator can be
- Constants -- age = 21;
- Variables -- my_cost = your_cost;
- Expressions -- circumference = diameter * 3.14159;

Assignment Statements

© 2003 Pearson Education, from http:// www.eecs.lehigh.edu/~kalafut/cse17/Introduction.ppt

• The ‘=‘ operator in C++ is not an equal sign
The following statement cannot be true in algebra

number_of_bars = number_of_bars + 3;

In C++ it means the new value of number_of_bars
is the previous value of number_of_bars plus 3

Assignment Statements

© 2003 Pearson Education, from http:// www.eecs.lehigh.edu/~kalafut/cse17/Introduction.ppt

• Declaring a variable does not give it a value
Giving a variable its first value is initializing the variable

• Variables are initialized in assignment statements

double mpg; // declare the variable
mpg = 26.3; // initialize the variable

Initializing Variables

© 2003 Pearson Education, from http:// www.eecs.lehigh.edu/~kalafut/cse17/Introduction.ppt

• Used for:
Value substitution
- C: #define BUFSIZE 100 -> C++: const int bufsize = 100;

Safety constants
- When the value of the variable shouldn’t change

• Constants must be initialized when declared

© Jacques de Wet, http://wwwcascina.virgo.infn.it/DataAnalysis/Noise/doc/Manuals/C++Course.ppt

Constants

• Pointers and references
const Fred* p
- p cannot be used to change an object p pointing to

Fred* const p
- Pointer value of p cannot be changed, but the object p

pointing to can be changed
const Fred* const p
- Nothing can be changed.

const Fred& p
- p cannot be used to change an object that p is referencing

© Jie Chen, http://www.jlab.org/~chen/teaching/C++Intro.ppt

Constants

• More places where constants can be used:
Function arguments & return values
Constants and classes
- Constant members
- Constant member functions

(see next session)

© Jacques de Wet, http://wwwcascina.virgo.infn.it/DataAnalysis/Noise/doc/Manuals/C++Course.ppt

Constants

C++ Standard Library
• C++ programs

Built from pieces called classes and functions

• C++ standard library
Provides rich collections of existing classes and functions for all
programmers to use
Example: iostream.h

Using Statements

• using statements
Eliminate the need to use the std:: prefix
Allow us to write cout instead of std::cout
To use the following functions without the std:: prefix, write the
following at the top of the program

using std::cout;
using std::cin;
using std::endl:

• Note: Not needed when sourcing iostream.h instead of iostream

• See also “Namespaces” section in next session

© 2000 Prentice Hall, from http://www.math.uncc.edu/~jkawczak/classes/math5040/dd/chapter01.ppt

• A data stream is a sequence of data
Typically in the form of characters or numbers

• An input stream is data for the program to use
Typically originates
- at the keyboard
- at a file

• An output stream is the program’s output
Destination is typically
- the monitor
- a file

Input and Output

© 2003 Pearson Education, from http:// www.eecs.lehigh.edu/~kalafut/cse17/Introduction.ppt

• cout is an output stream sending data to the monitor

• The insertion operator "<<" inserts data into cout

• Example:
cout << number_of_bars << " candy bars\n";

This line sends two items to the monitor
- The value of number_of_bars
- The quoted string of characters " candy bars\n"

Notice the space before the ‘c’ in candy
The ‘\n’ causes a new line to be started following the ‘s’ in bars

- A new insertion operator is used for each item of output

Output Using cout

© 2003 Pearson Education, from http:// www.eecs.lehigh.edu/~kalafut/cse17/Introduction.ppt

• This produces the same result as the previous example
cout << number_of_bars ;
cout << " candy bars\n";

• Here arithmetic is performed in the cout statement
cout << "Total cost is $" << (price + tax);

• Quoted strings are enclosed in double quotes ("Walter")
Don’t use two single quotes (')

• A blank space can also be inserted with

cout << " " ;

if there are no strings in which a space is desired as
in " candy bars\n"

Output Using cout

© 2003 Pearson Education, from http:// www.eecs.lehigh.edu/~kalafut/cse17/Introduction.ppt

• Escape sequences tell the compiler to treat characters
in a special way

• '\' is the escape character
To create a newline in output use

\n – cout << "\n";
or the newer alternative

cout << endl;

Escape Sequences

© 2003 Pearson Education, from http:// www.eecs.lehigh.edu/~kalafut/cse17/Introduction.ppt

Escape Sequence Description

\n Newline. Position the screen cursor to the
beginning of the next line.

\t Horizontal tab. Move the screen cursor to the next
tab stop.

\r Carriage return. Position the screen cursor to the
beginning of the current line; do not advance to the
next line.

\a Alert. Sound the system bell.
\\ Backslash. Used to print a backslash character.
\" Double quote. Used to print a double quote

character.

Escape Sequences

© 2000 Prentice Hall, from http://www.math.uncc.edu/~jkawczak/classes/math5040/dd/chapter01.ppt

• Real numbers (type double) produce a variety of outputs

double price = 78.5;
cout << "The price is $" << price << endl;

The output could be any of these:
The price is $78.5

The price is $78.500000
The price is $7.850000e01

The most unlikely output is:
The price is $78.50

Formatting Real Numbers

© 2003 Pearson Education, from http:// www.eecs.lehigh.edu/~kalafut/cse17/Introduction.ppt

• cout includes tools to specify the output of type double

• To specify fixed point notation
setf(ios::fixed)

• To specify that the decimal point will always be shown
setf(ios::showpoint)

• To specify that two decimal places will always be shown
precision(2)

• Example: cout.setf(ios::fixed);
cout.setf(ios::showpoint);
cout.precision(2);
cout << "The price is "

<< price << endl;

Showing Decimal Places

© 2003 Pearson Education, from http:// www.eecs.lehigh.edu/~kalafut/cse17/Introduction.ppt

• cin is an input stream bringing data from the keyboard
• The extraction operator (>>) removes data to be used
• Example:

cout << "Enter the number of bars in a package\n";
cout << " and the weight in ounces of one bar.\n";
cin >> number_of_bars;
cin >> one_weight;

• This code prompts the user to enter data then
reads two data items from cin

The first value read is stored in number_of_bars
The second value read is stored in one_weight
Data is separated by spaces when entered

Input Using cin

© 2003 Pearson Education, from http:// www.eecs.lehigh.edu/~kalafut/cse17/Introduction.ppt

• Multiple data items are separated by spaces

• Data is not read until the enter key is pressed
Allows user to make corrections

• Example:
cin >> v1 >> v2 >> v3;

Requires three space separated values
User might type

34 45 12 <enter key>

Reading Data From cin

© 2003 Pearson Education, from http:// www.eecs.lehigh.edu/~kalafut/cse17/Introduction.ppt

• Prompt the user for input that is desired
cout statements provide instructions

cout << "Enter your age: ";
cin >> age;

- Notice the absence of a new line before using cin

• Echo the input by displaying what was read
Gives the user a chance to verify data

cout << age << " was entered." << endl;

Designing Input and Output

© 2003 Pearson Education, from http:// www.eecs.lehigh.edu/~kalafut/cse17/Introduction.ppt

• 2 and 2.0 are not the same number
A whole number such as 2 is of type int
A real number such as 2.0 is of type double

• Numbers of type int are stored as exact values

• Numbers of type double may be stored as approximate
values due to limitations on number of significant
digits that can be represented

Data Types and Expressions

© 2003 Pearson Education, from http:// www.eecs.lehigh.edu/~kalafut/cse17/Introduction.ppt

• Various number types have different memory
requirements

More precision requires more bytes of memory
Very large numbers require more bytes of memory
Very small numbers require more bytes of memory

Other Number Types

© 2003 Pearson Education, from http:// www.eecs.lehigh.edu/~kalafut/cse17/Introduction.ppt

• long or long int (often 4 bytes)
Equivalent forms to declare very large integers

long big_total;
long int big_total;

• short or short int (often 2 bytes)
Equivalent forms to declare smaller integers

short small_total;
short int small_total;

Integer Types

© 2003 Pearson Education, from http:// www.eecs.lehigh.edu/~kalafut/cse17/Introduction.ppt

• long double (often 10 bytes)
Declares floating point numbers with up to
19 significant digits

long double big_number;

• float (often 4 bytes)
Declares floating point numbers with up to
7 significant digits

float not_so_big_number;

Floating Point Types

© 2003 Pearson Education, from http:// www.eecs.lehigh.edu/~kalafut/cse17/Introduction.ppt

• Computers process character data too

• char
Short for character
Can be any single character from the keyboard

• To declare a variable of type char:

char letter;

Type char

© 2003 Pearson Education, from http:// www.eecs.lehigh.edu/~kalafut/cse17/Introduction.ppt

• Character constants are enclosed in single quotes

char letter = 'a';

• Strings of characters, even if only one character
is enclosed in double quotes

"a" is a string of characters containing one character
'a' is a value of type character

char Constants

© 2003 Pearson Education, from http:// www.eecs.lehigh.edu/~kalafut/cse17/Introduction.ppt

• cin skips blanks and line breaks looking for data

• The following reads two characters but skips
any space that might be between

char symbol1, symbol2;
cin >> symbol1 >> symbol2;

• User normally separate data items by spaces
J D

• Results are the same if the data is not separated
by spaces

JD

Reading Character Data

© 2003 Pearson Education, from http:// www.eecs.lehigh.edu/~kalafut/cse17/Introduction.ppt

• bool is a new addition to C++
Short for boolean
Boolean values are either true or false

• To declare a variable of type bool:

bool old_enough;

Type bool

© 2003 Pearson Education, from http:// www.eecs.lehigh.edu/~kalafut/cse17/Introduction.ppt

• In general store values in variables of the
same type

This is a type mismatch:

int int_variable;
int_variable = 2.99;

If your compiler allows this, int_variable will
most likely contain the value 2, not 2.99

Type Compatibilities

© 2003 Pearson Education, from http:// www.eecs.lehigh.edu/~kalafut/cse17/Introduction.ppt

• Variables of type double should not be assigned
to variables of type int

int int_variable;
double double_variable;
double_variable = 2.00;
int_variable = double_variable;

If allowed, int_variable contains 2, not 2.00

int double

© 2003 Pearson Education, from http:// www.eecs.lehigh.edu/~kalafut/cse17/Introduction.ppt

• Integer values can normally be stored in
variables of type double

double double_variable;
double_variable = 2;

double_variable will contain 2.0

int double

© 2003 Pearson Education, from http:// www.eecs.lehigh.edu/~kalafut/cse17/Introduction.ppt

• The following actions are possible but generally not
recommended!

• It is possible to store char values in integer
variables

int value = 'A';
value will contain an integer representing 'A'

• It is possible to store int values in char
variables

char letter = 65;

char int

© 2003 Pearson Education, from http:// www.eecs.lehigh.edu/~kalafut/cse17/Introduction.ppt

• The following actions are possible but generally
not recommended!

• Values of type bool can be assigned to int
variables

True is stored as 1
False is stored as 0

• Values of type int can be assigned to bool
variables

Any non-zero integer is stored as true
Zero is stored as false

bool int

© 2003 Pearson Education, from http:// www.eecs.lehigh.edu/~kalafut/cse17/Introduction.ppt

• Arithmetic is performed with operators
+ for addition
- for subtraction
* for multiplication
/ for division

• Example: storing a product in the variable
total_weight

total_weight = one_weight * number_of_bars;

Arithmetic

© 2003 Pearson Education, from http:// www.eecs.lehigh.edu/~kalafut/cse17/Introduction.ppt

• % (modulus) operator gives the remainder from integer
division

int dividend, divisor, remainder;
dividend = 5;
divisor = 3;
remainder = dividend % divisor;

The value of remainder is 2

Integer Remainders

© 2003 Pearson Education, from http:// www.eecs.lehigh.edu/~kalafut/cse17/Introduction.ppt

Arithmetic
• Arithmetic calculations

Use * for multiplication and / for division
Integer division truncates remainder
- 7 / 5 evaluates to 1

Modulus operator returns the remainder
- 7 % 5 evaluates to 2

• Operator precedence
Some arithmetic operators act before others (i.e., multiplication before
addition)
- Be sure to use parenthesis when needed

Example: Find the average of three variables a, b and c
- Do not use: a + b + c / 3
- Use: (a + b + c) / 3

© 2000 Prentice Hall, from http://www.math.uncc.edu/~jkawczak/classes/math5040/dd/chapter01.ppt

Arithmetic
• Arithmetic operators:

• Rules of operator precedence:

C++ opera tion Arithmetic
opera tor

Algebra ic
expression

C++ expression

Addition + f + 7 f + 7

Subtraction - p – c p - c

Multiplication * bm b * m

Division / x / y x / y

Modulus % r mod s r % s

Operator(s) Operation(s) Order of evaluation (precedence)

() Parentheses Evaluated first. If the parentheses are nested, the
expression in the innermost pair is evaluated first. If
there are several pairs of parentheses “on the same level”
(i.e., not nested), they are evaluated left to right.

*, /, or % Multiplication Division
Modulus

Evaluated second. If there are several, they re
evaluated left to right.

+ or - Addition
Subtraction

Evaluated last. If there are several, they are
evaluated left to right.

© 2000 Prentice Hall, from http://www.math.uncc.edu/~jkawczak/classes/math5040/dd/chapter01.ppt

• Arithmetic operators can be used with any
numeric type

• An operand is a number or variable
used by the operator

• Result of an operator depends on the types
of operands

If both operands are int, the result is int
If one or both operands are double, the result is double

Results of Operators

© 2003 Pearson Education, from http:// www.eecs.lehigh.edu/~kalafut/cse17/Introduction.ppt

• Use spacing to make expressions readable
Which is easier to read?

x+y*z or x + y * z

• Precedence rules for operators are the same as
used in your algebra classes

• Use parentheses to alter the order of operations
x + y * z (y is multiplied by z first)
(x + y) * z (x and y are added first)

Arithmetic Expressions

© 2003 Pearson Education, from http:// www.eecs.lehigh.edu/~kalafut/cse17/Introduction.ppt

If-Else

• The if-else statement in C++ is used to compare two
options:

if (condition)

{statement1; } will execute if the condition is "True"

else

{statement2;} will execute if the condition is "False"

Numerical Values of Conditions
• In relational (logical) expressions (=conditions), the value of the

expression can only be an integer value of 1 or 0, which is
interpreted as true or false, respectively.

© Kamrul Ahmed, http://www.neiu.edu/~ncaftori/c++DOC.ppt

Standard a lgeb ra ic
equa lity opera tor or
re la tiona l opera tor

C++ equa lity
or re la tiona l
opera tor

Examp le
of C++
c ond ition

Meaning of
C++ cond ition

Relational operators

> > x > y x is greater than y

< < x < y x is less than y

≥ >= x >= y x is greater than or equal to y

≤ <= x <= y x is less than or equal to y

Equality operators

= == x == y x is equal to y

≠ != x != y x is not equal to y

Equality and Relational Operators

© 2000 Prentice Hall, from http://www.math.uncc.edu/~jkawczak/classes/math5040/dd/chapter01.ppt

Logical Operators

• AND, OR, NOT operators are called logical operators.
These operators are represented by the symbols &&, || and
!, respectively.

• When the AND operator, &&, is used with two simple
expressions, the condition is true only if both individual
expression are true.

© Kamrul Ahmed, http://www.neiu.edu/~ncaftori/c++DOC.ppt

Logical Operators
Here is a compound statement showing the AND operator.

(grade>89)&& (semester <3)

is a true condition because both condition is evaluated a true
condition.

On the other hand, for the logical OR (||) operators , the condition
is satisfied if either one of the two expression is true. Thus the
compound condition

(mile<40 || age>50)

will be true if the mile is less than 40 or age is greater than 50 .

© Kamrul Ahmed, http://www.neiu.edu/~ncaftori/c++DOC.ppt

Loops

• The repetition statement defines the boundaries containing the repeating
section of code and also controls in what form the code will be executed or
not.

• The three different forms of loops:

• while (expression) {statement; }

• do {statement; } while (expression)

• for (inital statement, expression, increment statement) {statement;}

• Switch (case) statements are a substitute for long if
statements. The basic format for using switch case is
outlined below:

switch (variable) {
case expression1:

do something 1;
break;

case expression2:
do something 2;
break;

....
default:

do default processing;
}

Switch

• An array is defined with this syntax:
datatype arrayName[size];

• Elements are numbered 0,…,size-1!
• Examples:

double temperatures[31];
/* Could be used to store the daily temperatures in a

month */

char name[20];
/* Could be used to store a character string. C-style

character strings are terminated be the null character, '\0'. */

Arrays

#include<iostream.h>

const int MAXNUMBERS=6;
int main()
{
int i, number[MAXNUMBERS];
for(i=0;i<=MAXNUMBERS; i++) //Enter the numbers

{
cout<<”Enter a number :”
cin>>number[i];
}

cout<<endl<<endl;
for(i=0; i<MAXNUMBERS;i++)// Print the numbers

{
cout<<”Number ”<<number[i]<<”is” <<NUMBERS[i]<<endl;
return 0;
}

}

Example Program

© Kamrul Ahmed, http://www.neiu.edu/~ncaftori/c++DOC.ppt

OUTPUT:
Enter a number:5
Enter a number:6
Enter a number:7
Enter a number:8
Enter a number:9
Enter a number:10
Number 1 is 5
Number 2 is 6
Number 3 is 7
Number 4 is 8
Number 5 is 9
Number 6 is 10

Example Output

© Kamrul Ahmed, http://www.neiu.edu/~ncaftori/c++DOC.ppt

• Forgetting to close string sent to cout with a double quote
• Omitting or incorrectly typing the opening and closing braces

of main and functions
• Omitting necessary semicolon at the end of statement
• Adding a semicolon at the end of the #include directive
• Wrong case or misspelled identifier
• Accidental use of keyword as identifier
• Typing the letter O for the number zero (0) or vice versa
• Forgetting to declare all the variables used in a program

Some Frequent Programming Errors

Resources and Further Reading

WWW:

http://www.desy.de/gna/html/cc/Tutorial/tutorial.html
http://www.cs.fit.edu/~mmahoney/cse2050/introcpp.html
http://www.acm.org/crossroads/xrds1-1/ovp.html
http://www.thefreecountry.com/compilers/cpp.shtml

Textbook this lecture is based on:

Bjarne Stroustrup, The C++ Programming Language,
3rd Ed,, Addison Wesley, 1997.

