
Supplementary Material for�Developing a Denoising Filter for Eletron Mirosopy andTomography Data in the Cloud� byZbigniew Starosolski, Marek Szzepanski, Manuel Wahle,Mirabela Rusu, and Willy Wriggers1. On the Treatment of Noise in Eletron Mirosopy and TomographyAs desribed in Setion 1 of the main text, reorded ryo-EM and tomographyimages show a very low SNR due to the low radiation dose that is neessary toprotet the biologial speimen.In the past few deades, the in�uene of environmental fators has beenarefully studied, and a onsensus has emerged that speimens at lowertemperature are more robust to high-energy eletrons in terms of speimendegradation (Wright et al., 2006). However, high-energy eletrons also ausehanges in ie density and indue displaements of the speimen. Reent studieshave shown that for high resolution (4-10Å) ryo-EM reonstrutions, there is littlebene�t of a temperature below liquid nitrogen (Bammes et al., 2010), and only thelower resolution (20-60Å) maps tend to bene�t from a lower temperature.Therefore, noisy mirographs will remain an important problem in the foreseeablefuture.Single-partile and tomographi reonstrution overome these limitations byproessing vast numbers of individual partile projetions. The partiles areidenti�ed on 2D mirographs, lassi�ed or aligned aording to their rotation, andaveraged before (ryo-EM) or after 3D reonstrution (tomography) to redue noiseand strengthen the true signal. Diverse proessing tehniques for digitization,partile piking, and lassi�ation are well established Frank (2006a,b).The limitations of 3D data mentioned above pose a formidable hallenge todenoising methods. Unfortunately, linear �ltering methods suh as Gaussianaverages are not able to e�etively redue the exessive amount of noise whilepreserving the detail of edges (Gonzales and Woods, 2002). One solution developedby us and many others (see below) is to allow for non-linearities in the �ltering.We aknowledge that ryo-EM and tomography data are often olleted andproessed in a way that preserves linearity. Ideally, one wishes for 3D maps to beinterpretable in terms of maromoleular mass density. The introdution ofnon-linearities distorts this relation and, therefore, must be applied with aution.The main text shows that non-linear �lters an be advantageous, but we believethat they should be limited to ases where linear �lters are learly insu�ient.1



Non-linear methods also require a tradeo� between noise redution andpreision based on empirial riteria that are unrelated to the �rst priniples ofimage formation or 3D reonstrution. In fat, the most useful denoising methodsare those that adaptively hange their performane based on the loal onditions ofthe spei� data and use intriate noise models (Baxter et al., 2009). For example,the widely used bilateral �ltering method employs two ompeting low-pass �ltersworking together (Jiang et al., 2003). One low-pass �lter is applied to intensitieswhile the other is applied to distanes. The �lter parameters are set for all theinput data, ausing a loss of robustness to di�erent noise values. An extension ofthis method is a disriminative bilateral �lter in whih an additional photometridisriminant funtion is embedded (Panteli et al., 2006). The additionaldisriminant distinguishes between edges and impulse noise. With properly hosenparameters, high frequeny noise pixels are smoothed while the objet edge detail ispreserved.An alternative approah builds on anisotropi nonlinear di�usion(Fernandez and Li, 2003) by adapting the parameters of a Gaussian-based �lter toloal features. These loal features are determined by eigenanalysis of the averagesof the image tensors.More reently, Wei and Yin (2010) introdued a loally optimized adaptivenon-loal means method, whih improves the approah originally developedby Buades et al. (2005). This method uses a loal and global standard deviation ofthe image data and a parameter-sensitive deision rule. The adjustment of theseparameters is a hallenging task that requires knowledge and experiene to ahievethe desired e�et. The DPSV �lter developed by us and desribed in the followingsetion is an alternative to these loal variane- (or variability-) based �lters.2. The DPSV Filter Algorithm as Applied to Cryo-EM and TomographyDataA shemati overview of the algorithm is presented in Fig. 1 of the main text. Toassist users, we will provide here, for the �rst time, a omplete review of the DPSVtheory as applied to ryo-EM and tomography maps.2.1. Loal Searh Strategy and the Digital Path ApproahThis setion desribes a loal searh strategy based on digital paths generatedby a self-avoiding walk (Havlin and Ben-Avraham, 1982). Two neighborhood modelsan be de�ned in 2D data: a 4-neighborhood and a 8-neighborhood. In the ase of3D data, a 6-neighborhood and a 26-neighborhood an be de�ned (see Szzepanski,2



P\M 3 5 7 9 3 5 7 9
2D 4-neighborhoods 8-neighborhoods1 4 4 4 4 8 8 8 82 8 12 12 12 24 56 56 563 8 32 36 36 56 264 368 3684 64 96 96 1056 2016 23365 240 280 9888 136086 718 73632
3D 6-neighborhoods 26-neighborhoods1 6 6 6 6 26 26 26 262 24 30 30 30 650 650 6503 144 150 150 11928 15986 159864 720 726 350592 3889945 3528 9051144Supplementary Table 1: Cardinality of a set of paths for a 2D and 3D �ltering sheme as a funtionof the mask size M and path length P2008). The hosen model of the neighborhood a�ets the ardinality of the pathset (see Suppl. Table 1), the omputation time, and the quality of the results. Themethod is based on a loal �ltering approah where the loal (2D or 3D) spaeis limited by the dimension, M , of a (square or ubi) mask, and the reah andurvature of the digital walk within the mask is set by its length, P . An inreasein these parameters typially results in a more preise exploration of loal spae.Small mask sizes and a long paths (P > (M − 1)/2) ause paths to fold inside themask, whih allows them to sample urved or bent features. Short walk lengths

P ≤ (M − 1)/2 are unrestrited by the mask and are better suited for straight edgesin the data. The mask size and path length should be adjusted to the struturefound in the data upon examination.Fig. 1b in the main text shows a 2D example of a digital walk through one offour nearest neighbors. The virtual partile (blak irle) is initially at position pi,then takes a step through the �rst neighbor pi(1),∗,1 (gray irle), and then ontinuesthrough its seond neighbor from the set: N3 =
{

pi(1),1,2, pi(1),2,2, pi(1),3,2

} (whiteirles). This walk will produe three di�erent digital paths of length P = 2: pi →
pi(1),l,1 → pi(1),l,2 where l = 1 . . . 3 for the nearest neighbor pi(1),∗,1. For all fourneighbors, there will be a total of 12 paths. During eah step along the path, thevirtual partile is de�ned by its spatial position and the value of the intensity I(pi),whih is the intensity of a pixel normalized aross the image.3



2.2. Spatial Intensity of Digital PathsThe spatial intensity of a path is de�ned as a onnetion ost. This is themaximum ost observed among pixels that are linked by one path. The individualonnetion ost is de�ned as the absolute di�erene of (normalized) intensitiesbetween the enter pixel pi and a linked pixel pi(n),l,k, divided by their Eulideandistane. The onnetion ost of the l-th path passing through the n-th losestneighbor is thus de�ned as
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 , (1)where the maximum is omputed among k = 1, . . . , P pixels along the l-th path,
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∣ is an absolute di�erene of intensities between linked pixels pi and
pi(n),l,k along the path, and dist(.) denotes the Eulidean distane.2.3. Supervised Classi�ationIdeally, we wish to distinguish between paths that inlude noise and ones that donot, and then to reover pixel values using only the paths that inlude the true signal.Here, we assume that the digital paths that explore a smooth intensity landsapeorrespond to a noise-free neighborhood. Paths with a relatively large onnetionost are assumed to hold high-frequeny noise or ross the edge of an objet. Wenote that any objet edge detail is preserved by those paths that follow the edge,thus preventing a softening of edges.At this point, we require a lassi�ation proedure to group the paths into twolasses, whih should be robust under di�erent bakground levels and should preservethe paths with a relatively low onnetion ost. Following Smolka (2008), we adaptFisher's disriminant analysis (FDA) using a maximized Fisher funtional in Eqn. 2below, whih separates the set of paths into two lasses that (ideally) orrespond tosignal and noise. The paths are �rst sorted in desending order based on the valueof rk = ΛP

n,l {.}. The Fisher disriminant (Smolka, 2008) is then de�ned as
F (k) =

[m1(k) − m2(k)]2

v1(k) + v2(k)
, k = 1, . . . , u − 1 , (2)where m1,m2 and v1,v2 are the means and the varianes, respetively, as alulatedfor two lasses:
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2, k = 1, . . . , u − 1 . (4)Here, u is the ardinality of the set of paths. The ardinality depends on masksize M , path length P , and the neighborhood model as listed in Suppl. Table 1.The disriminant analysis sueeds if one an �nd a k∗ that ful�lls

k∗ = arg maxF (k) . (5)If FDA annot divide the set of paths into two sets, the �rst r1 = min (rk) , k =
1, . . . , u− 1 will be hosen for further proessing (see Eqn. 6 below), i.e. neighboringpixels will always ontribute to the �lter response.Fig. 1 in the main text provides an illustrative example of FDA for a set offour paths. The input set of the four paths labeled 1, 2, 3, and 4 is sorted withrespet to the onnetion ost. After applying FDA, the labeled paths (3, 2, 4)remain for further analysis. For a more detailed desription of FDA see Smolka(2008) and Kenney et al. (2001).2.4. Similarity FuntionThe output intensity of the entral pixel is alulated as the ost-weighted meanof the surviving paths through the neighborhood (similarity funtion):
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, (6)where I(pi(n),∗,1) is the (normalized) intensity assoiated with the losest neighborfrom the foal pixel pi and size N is the number of neighbors in the neighborhoodmodel. The umulative ost is de�ned as
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, (7)where the kernel funtion K(β, Λ) has to ful�ll the imposed onditions: smooth,onvex, and dereasing funtion on R+. After empirially exploring a number ofpossible funtions (data not shown) we hose the exponential funtion K(β, Λ) =
e−βΛ as a kernel. Setion 4 explores the sharpness parameter, β.As the mask (see diagram in Fig. 1a in the main text) is moved along pixels, i, theweighting proess depends on the shared relations between the intensity assoiated5



with the losest neighbor pi(n),∗,1 and the umulative ost alulated in the maskdesribed by Ξ(pi(n)).2.5. Usage and 3D AppliationsIn Sulptor version 2.1 (http://sulptor.biomahina.org), the DPSV �lteran be applied to a map via the menus �Volume� → �DPSV Filter� (enteringparameters M , P , and β in the pop-up dialog box). In Situs version 2.7(http://situs.biomahina.org), a separate ommand-line utility vol�tr wasimplemented for DPSV (see online user guide).The appliations in the main text were seleted as qualitative examples of theuse of DPSV for 3D �ltering. To gain a quantitative understanding of the �lterperformane in future work, one ould ompare raw and �ltered versions of noisy ryo-EM maps with known atomi resolution strutures. There are several known ryo-EMstrutures that were also solved by X-ray rystallography and would lend themselvesas test andidates for a quantitative (real-spae or Fourier spae) validation of �lterrobustness.3. Denoising Experimental 2D MirographsIn addition to the 3D appliations in the main text, we investigated here the e�etof �ltration on experimental 2D mirographs. In the �rst 2D test (Suppl. Fig. 1), weexamined the di�erene images of data before and after �ltration (Russ, 2002). Ifthere are any shadows resembling the original shapes in the di�erene images, thenit is an indiation that the �lter greatly in�uenes the struture hidden under noise.On the other hand, if the di�erene image shows only random and uniform noise,then the result indiates that the �ltration preserves the features.For this test, we hose a representative projetion of the Keyhole LimpetHemoyanin (KHL) protein (pixel size 2.22Å at the speimen sale), see Zhu et al.(2003). Suppl. Fig. 1A and D present seleted mirographs of the side and topview. Suppl. Fig. 1B and E show the results after �ltering (with mask size M = 7,path length P = 3, 8-neighborhood model, and �lter parameter β = 0.0005. TheFDA redued the number of paths entering Eqn. 6 by an average of 12% (Suppl.Fig. 1B) or 28% (Suppl. Fig. 1E). As an be seen in the di�erenes between imagesSuppl. Fig. 1C and F, there are no notieable shapes or strutures in the noise.This result suggests that DPSV behaves properly for these onditions.4. Denoising Simulated 2D Image Staks and Setting βThis setion demonstrates the e�et of DPSV on lass averages derived from thesimulated projetion of image staks. The results are dependent on the noise level6
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Supplementary Figure 1: Filtering results of representative projetions of the Keyhole LimpetHemoyanin protein obtained by ryo-EM (pixel size 2.22Å; top row = side view; bottom row =top view): (A) Original data; (B) data after �ltering; (C) di�erene between (A) and (B); (D)original data; (E) data after �ltering; (F) di�erene between (D) and (E).and the resolution of the simulated projetion. As shown in Suppl. Fig. 2, we reatedthree data sets derived from a single moleule using di�erent resolutions and pixelsizes. To failitate the alulation of lass averages, we olleted data from separatestaks of images. Eah stak ontained projetions taken from the same angle subjetto di�erent realizations of simulated noise.For the validation (Suppl. Fig. 2), we hose the ribosomal subunit of Haloarulamarismortui solved by Klein et al. (2001) (PDB ID 1jj2). We simulated a densitymap from atomi oordinates with di�erent resolutions 6Å, 10Å, 15Å and voxelspaings 1Å, 2Å, 3Å, respetively.To simulate noise in the staks of images (Suppl. Fig. 2), we did not simplyapply plain Gaussian white noise or impulse noise. Suh simple noise models areeasy to eliminate due to the lak of spatial orrelation. In mirographs obtainedexperimentally from ryo-EM, the noise is intriate (Baxter et al., 2009) and does7
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Supplementary Figure 2: (A) Atomi struture of ribosomal unit (PDB ID 1jj2). (B-D) Simulateddensity maps with resolution 6Å, 10Å, 15Å at voxel spaings 1Å, 2Å, 3Å respetively. (E-G)Staks of simulated 2D projetions.not follow a simple model. Therefore, we mimiked this omplexity using a proedurethat generates staks of 2D images that are subjet to Gaussian white noise withdi�erent distribution parameters for eah stak. Next, we applied a Gaussian low-pass �lter to eah 2D image, whih aused the spatial dependene of noise (i.e.,8



Supplementary Figure 3: Example of one realization of olored noise: (A) Pixel size 1Å; (B)projetion to 2Å pixel size; (C) projetion to 3Å pixel size. The length of the displayed bar is 30Å,i.e. 30 pixels for 1Å, 15 pixels for 2Å and 10 pixels for 3Å pixel size.olor noise) as is typial in experimental ryo-EM data that is �ltered to a spei�resolution. To show that the behavior of the �lter depends not only on the noiselevel but also on the pixel size, we projeted the noise onto a larger 2Å and 3Å pixelspaing by loal averaging of 2 × 2 and 3 × 3 pixels, respetively. Then, we addedit to the stak of 2D partile projetions of the orresponding pixel spaing with aproper SNR ratio in the range of 0.5 to 0.03.Suppl. Fig. 3 provides an example of digitized noise with di�erent pixel spaing.The desribed proedure yields three staks of 2D images with di�erent pixel spaings1Å, 2Å, 3Å, and at di�erent noise levels. Eah stak of images presents the sameprojetion but with di�erent realizations of noise (128 realizations in total). Toshow how the algorithm in�uenes the SNR for the lass averages, we alulatedthe averages of images from the (sub-) sets of {1, 2, 4, 8, 16, 32, 64, 128} images. Asimulated noise-free projetion and a series of projetions orrupted by simulatednoise are shown for eah of the three ases in Suppl. Fig. 4. The results show that alarger pixel size leads to an inrease in observed SNR values.
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Supplementary Figure 4: Example of noise-free projetions and di�erent noise levels. The �rstolumn shows simulated projetions, and the following olumns show projetions orrupted withsimulated noise at inreasing SNR values in white.

Supplementary Figure 5: The in�uene of parameter, β, on �lter performane as judged by SNRvalues after �ltering. (A) Density map with resolution 6Å and voxel size 1Å; (B) density map withresolution 10Å and voxel size 2Å; (C) density map with resolution 15Å and voxel size 3Å. Unitsfor axis β represent the exponent i in the form: β = 0.5(i). Values of βmax indiate the value of the�lter parameter that maximizes �lter gain for eah resolution.10



We have optimized the �lter parameters based on the size of the partile and pixelsize. Loal parameters suh as mask size M and path length P are intuitive, but theseletion of the �ltering kernel parameter β requires more experiene. To investigatethe in�uene of β on values of SNR after �ltering, we hose β ∈ {0.5i, i = 1, . . . 12}for all three data sets. Suppl. Fig. 5 presents the results. It is lear that the optimalvalue of parameter β depends on the pixel spaings 1Å, 2Å, and 3Å: The SNR ismaximized for βmax(1Å)= 0.57, βmax(2Å)= 0.510, and βmax(3Å)= 0.511, respetively.Next, we investigated the performane of the DPSV �lter under the realistiondition of averaging the subsets of the image stak. We also ompared the e�et of�ltration on the averaging proess to the e�et of a standard Gaussian �lter using asigma (standard deviation of the 1D Gaussian envelope) of two pixels. Suppl. Fig. 6

Supplementary Figure 6: Desriptive statistis of �lter performane for eah of the investigatedimage staks. The box plots show the distribution parameters of DPSV and Gaussian �lter gain (logof di�erene between averages of image stak subsets {1, 2, 4, 8, 16, 32, 64, 128} after �ltration andthe averages of subsets before �ltration), alulated as a funtion of the SNR values of individualimages in the stak. Eah box shows the mean, maximum, minimum, lower quartile, and upperquartile. Optimum Gaussian parameters were seleted for the Gaussian ontrol alulations.11



presents the results. Eah box plot in Suppl. Fig. 6 shows the statistial distributionof gain values observed in the averaged subsets (from {1, 2, 4, 8, 16, 32, 64, 128} stakimages) for a given stak image SNR level. The desriptive statistis show that the�ltering tehnique is stable in the tested SNR range of 0.03 to 0.5. We also notethat the DPSV �lter does not behave linearly (the results depend on supervisedlassi�ation), as was observed in the Gaussian ontrol alulations. However, theobtained results vary within reasonable limits. In all of the tested ases, the �ltergain is at least 3 dB higher ompared to the Gaussian �lter.Suppl. Fig. 7 provides a omparison of lass averages of �ltered and un�lteredimages (with mask size M = 7, path length P = 3, 8-neighborhood, and β =
βmax(1Å)). As an be learly seen, beginning from a stak of 32 images, �ltering andaveraging both greatly improve the image details and resulting SNR. The gain of
∼9 dB ahieved by �ltering is largely independent of the stak size (.f. Suppl. Fig. 6upper left).

Supplementary Figure 7: Example of images before (top) and after (bottom) �ltering, simulatedfor 6Å resolution, 1Å pixel spaing, averages from (sub-) sets {1, 2, 4, 8, 16, 32, 64, 128}, �lteredwith mask size M = 7, path length P = 3, and βmax(1Å)= 0.57.We reognize that any �lter with low-pass properties will improve the overall SNRof the image, simply by virtue of its ability to up-weight the ontribution of the highSNR information at a low frequeny. Therefore, more extreme low-pass �ltrationwill improve SNR, but the loss of details make the results unattrative. We haveo�ered a simple test of the preservation of high resolution features in Setion 3. Wehave also explored the trade-o� between low-pass �ltration and feature preservationin Supplementary Data 1 of (Rusu and Wriggers, 2012) for DPSV and the Gaussian�lter: The results demonstrate better feature preservation properties in DPSV at aomparable level of low-pass �ltration. 12
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