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a b s t r a c t

Cryo-electron microscopy (cryo-EM) enables the imaging of macromolecular complexes in near-native
environments at resolutions that often permit the visualization of secondary structure elements. For
example, alpha helices frequently show consistent patterns in volumetric maps, exhibiting rod-like
structures of high density. Here, we introduce VolTrac (Volume Tracer) – a novel technique for the anno-
tation of alpha-helical density in cryo-EM data sets. VolTrac combines a genetic algorithm and a bidirec-
tional expansion with a tabu search strategy to trace helical regions. Our method takes advantage of the
stochastic search by using a genetic algorithm to identify optimal placements for a short cylindrical
template, avoiding exploration of already characterized tabu regions. These placements are then utilized
as starting positions for the adaptive bidirectional expansion that characterizes the curvature and length
of the helical region. The method reliably predicted helices with seven or more residues in experimental
and simulated maps at intermediate (4–10 Å) resolution. The observed success rates, ranging from 70.6%
to 100%, depended on the map resolution and validation parameters. For successful predictions, the
helical axes were located within 2 Å from known helical axes of atomic structures.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction search with a segmentation-linkage schema (Lasker et al., 2005).
The continuing progress in the field of cryo-electron microscopy
(cryo-EM) due to the improvement of the instrumentation, data
acquisition, and image processing techniques (Baumeister and
Steven, 2000; Frank, 2002) yields increasing numbers of biomolec-
ular systems solved at intermediate to high resolution (Cong and
Ludtke, 2010). Our focus here is on the most abundant
intermediate-resolution (6–10 Å) reconstructions that exhibit the
characteristic density signatures of secondary structure elements.

There are already a number of existing tools for the annotation
of such secondary structure elements in cryo-EM maps. HelixHun-
ter is a semi-automatic approach that combines a thresholding-
segmentation scheme with an exhaustive search using a short heli-
cal template (Jiang et al., 2001). In SSEHunter, a modified template
search approach yielded a-helix and b-sheet probabilities for a
coarse-grained representation of the map (Baker et al., 2007),
which was then manually annotated by secondary structure type.
EMatch is a more automated approach that combines a template
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All of these template search techniques involve the discrete explo-
ration of the cryo-EM map using a short cylindrical template,
which is subject to a relatively coarse angular and translational
sampling. More recently, helical regions were also predicted based
on density gradient information (Dal Palù et al., 2006); however,
the utility of the method was not yet demonstrated on experimen-
tal reconstructions. In addition to these algorithmic search ap-
proaches, it is still common practice to use manual identification
of helical map regions in the modeling work flow. For example,
a-helices were flexibly fit into low-resolution cryo-EM maps of
transmembrane proteins (Kovacs et al., 2007), and folding topology
was modeled from sequence-based secondary structure predic-
tions (Wu et al., 2005; Lindert et al., 2009).

Here, we introduce the VolTrac (Volume Tracer) approach that
annotates elongated features corresponding to helical regions in
cryo-EM maps. Although significant contributions have already
been made by other authors with respect to helix detection, we feel
that there is still an opportunity to explore alternative methods.
One of our aims was to enable a fully automatic exhaustive search
with a novel, quasi-continuous sampling of orientations and trans-
lations that visualizes helices on the fly as they are being detected.
Inspired by earlier filtering approaches (Dal Palù et al., 2006;
Chacón and Wriggers, 2002), we implemented a novel correction
of map density variation for enhanced detection of helical densi-
ties. Another aim was to detect and follow the curvature of a helix.

http://dx.doi.org/10.1016/j.jsb.2011.11.029
mailto:mirabela.rusu@biomachina.org
http://dx.doi.org/10.1016/j.jsb.2011.11.029
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The VolTrac method combines a genetic algorithm (GA) for qua-
si-continuous sampling, a bidirectional expansion for following
helical curvature and length, and a tabu search strategy for opti-
mizing the exploration. Inspired by Darwinian evolution, GAs opti-
mize a population of solutions allowed to evolve with operators
such as mutation and crossover under the pressure of a scoring
function (Holland, 1975; Goldberg, 1989). The evolutionary tabu
search was introduced earlier for the simultaneous registration of
multiple-component crystal structures with the cryo-EM map of
their assembly (Rusu and Birmanns, 2010). VolTrac uses a small
cylindrical template for which three translations and two rotations
are optimized. When sampling the cryo-EM map, the population of
cylindrical templates evolves for several generations while maxi-
mizing the cross-correlation coefficient. The best scoring template
is typically placed within a helical region, aligned to the helical
axis. Further processing using a local bidirectional expansion then
follows the curvature and determines the length of the helical re-
gion. Once identified, the helices are placed into a tabu list to avoid
redundant exploration.

Section 2 provides a detailed description of the implementation
of the algorithm. In Section 3 we present an extensive validation of
VolTrac on simulated and experimental maps with resolutions
ranging from 4 to 10 Å. Finally, we describe computational perfor-
mance, advantages, and limitations in Section 4.

2. Methods

The work flow of VolTrac shown in Fig. 1 A corresponds to the
structure of this section. First, a novel local normalization filter
for the cryo-EM map is introduced as a pre-processing step. Then,
a detailed description of the genetic algorithm (GA), bidirectional
expansion, and tabu search strategy is given. In the next step, we
present the stop criteria and the post-processing of the helices. Fi-
nally, the validation procedure is described.

2.1. Local normalization of the cryo-EM map

A Gaussian-weighted local normalization is applied to the input
map prior to launching VolTrac. Such normalization is beneficial
because it enhances the appearance of the helices and it equalizes
any uneven background density distributions in experimental
cryo-EM maps (see Section 3). The filter is used only for helix
detection, and no particular physical meaning is attributed to
the resulting densities. For each voxel r, the average qemðrÞ and
the standard deviation rðqemðrÞÞ of the densities are computed in
Fig. 1. (A) VolTrac work flow: A random initial population of cylindrical templates is allo
bidirectional expansion. The annotated region is included in the tabu list. A new GA run
expansion, the axis of the region is updated, allowing the template to follow the curvatu
obtained in the bidirectional expansion. Middle: Comparison between the axes of the pr
averaging four consecutive alpha carbons of the atomic structure. All molecular graphic
the local neighborhood, using weights that follow a Gaussian dis-
tribution. The parameter rW characterizes the spatial extent of
the Gaussian and is given in voxel units. For the maps presented
here, rW equals 2.5 voxel units for the experimental maps and
1.5 voxel units for simulated maps. Simulated maps do not require
leveling of the background, but we observed that locally normal-
ized simulated maps enhance rod-like features, thus promoting
the detection of a-helices. Consequently, the local normalization
was applied to both experimental and simulated maps. In practical
applications the voxel spacing may not always follow the map res-
olution, so as a rule of thumb we suggest that rW should be equiv-
alent to about half the nominal resolution of a map.

The locally normalized densities are then computed according
to the formula

q=
emðrÞ ¼

qemðrÞ � qemðrÞ
rðqemðrÞÞ

; ð1Þ

where qemðrÞ is the original density at voxel r and q=
emðrÞ represents

the locally normalized density. The subtraction of the local mean
has the effect of centering the local intensities at zero while the
division by sigma normalizes the ‘contrast’ such that positive den-
sities of the helical rods are at comparable amplitude. Since helices
exhibit high densities relative to their surroundings, they will exhi-
bit positive density after filtering. Therefore, for the purpose of helix
tracing, we discard the negative densities of the signal.

The local normalization will amplify any exterior noise, so
experimental maps that contain outside noise should be threshol-
ded and/or segmented at the molecular surface density level to set
exterior densities to zero. Here, the experimental maps were thres-
holded to the ‘‘suggested contour level for viewing the map’’ given
by the EMDB Database (Tagari et al., 2002). Such thresholding does
not affect the extraction of a-helices that correspond to higher
density regions. No such thresholding or segmentation was applied
to the simulated maps, which were created without noise. To
remove noise from the filtered maps, a Gaussian blurring using a
sigma of 1.5 voxel units was applied in this work after local
normalization. Alternatively, a user may apply a more advanced
denoising scheme such as the Digital Paths Supervised Variance
filter developed by us (Starosolski et al., submitted).

2.2. Genetic algorithm

Inspired by biological evolution, GAs use genetic operators such
as mutation and crossover to optimize a fitness function in an
iterative optimization (Goldberg, 1989). GAs consider a population
wed to evolve for several generations. The best scoring template is then used for the
is executed, starting from new random distributions. (B) During the bidirectional

re of the helix. (C) Top: The predicted helix is described by the translation centers
edicted helix and known helix. Bottom: The axis of the known helix is obtained by
s in this paper were generated with Sculptor (Birmanns et al., 2011).
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of candidate solutions and allow it to evolve over several genera-
tions according to an elitist scheme based on the principle of sur-
vival of the fittest. One reason for using the GA optimization for
VolTrac was that it allowed the approach to be integrated into
our interactive molecular graphics software Sculptor (Birmanns
et al., 2011) to visualize helices in real time as they were identified.
Another important reason for the GA was the possibility of sup-
porting a quasi-continuous representation of translations and
rotations.

In VolTrac, each individual in the population represents a cylin-
drical template (radius = 2 Å, length = 20 Å) with the three transla-
tional and two rotational degrees of freedom as the free
optimization parameters (the irrelevant rotation about the cylin-
der’s main axis is ignored). These five degrees of freedom are en-
coded by four parameters [x,y,z; ri], where x, y, and z represent
the three dimensional translations and ri is an index of the list of
angles that uniformly sample the rotational degrees of freedom
using an angular step size of 1�. The angular sampling thus ap-
proaches a continuum, in contrast to earlier template convolution
techniques that reported orientational steps of up to 15�. The fit-
ness of each individual in the population is then estimated based
on a cross-correlation coefficient that samples the cryo-EM map
within the template cylinder mask. This coefficient is calculated
according to Eq. (1) in Wriggers (2012), where qcalc corresponds
to the cylinder mask projected to the map lattice. As mentioned
above, we correlate this template with a locally normalized map,
an approach that is similar to normalizing the correlation locally
(Roseman, 2000).

Two genetic operators are considered during the GA evolution
(see Rusu and Birmanns, 2010, for implementation details). The
mutation modifies the transformation of the templates, allowing
them to sample the cryo-EM map at different placements or with
various orientations. Large mutations enable the template to ex-
plore the map, while small mutations have the effect of a more
localized refinement. The mutation operator modifies randomly
picked individuals by applying variations that follow a Cauchy
distribution:
Cðb; xÞ ¼ b=ðp � ðb2 þ x2ÞÞ ð2Þ
where b ¼ 0:05 corresponds to the standard deviation. Compared to
a Gaussian, the Cauchy distribution is also biased to small variations,
but it creates larger deviations with higher probability, thereby pro-
moting a better exploration of the search space. For example, when
the mutation operator is applied, a new template is generated
according to the parameters of an individual template randomly se-
lected from the population. The new template only differs from the
original by one randomly chosen parameter following a Cauchy dis-
tribution. The new template will be slightly different but typically
close to the original, thereby allowing a refinement of the placement.

The crossover operator enables the exchange of information be-
tween GA template individuals. New transformations are identified
by swapping the translations and rotations of selected templates.
We used a combination of crossover schemes where [x,y,z; ri] were
either swapped at one or multiple points, or modified using arith-
metic operations (Rusu and Birmanns, 2010). The crossover opera-
tor not only affords efficient exploration of the cryo-EM map, but it
is also particularly beneficial in the case of bundles of parallel heli-
ces where the orientation is conserved.

Initially, the cylindrical template population randomly samples
the cryo-EM map outside of any tabu regions (Fig. 1A, top left). This
population is then allowed to evolve under selective pressure for
several generations until an optimal solution is found (a solution
is considered optimal when no further improvements are achieved
over several generations).
2.3. Bidirectional expansion

The template with the optimal placement usually covers part of
a helical region, aligned with its main axis (e.g., Fig. 1A, top right),
but it does not capture the full length of the helix or its curvature.
Starting from this optimal placement and using the template’s
main axis as an indicative direction, a bidirectional expansion is
performed to determine curvature and length of the helix.

The bidirectional expansion is performed in two steps, using an
8 Å-long cylinder with a radius of 1 Å. First, a local refinement of
the translations and rotations is performed at the current place-
ment of the template. In the second step, the template is translated
in one and then the other direction along the axis of the optimal
solution (Fig. 1A, bottom right). These two steps are iterated along
the axis of the helical region until the score at the current position
falls below a certain percentage of the initial score. By default, this
limiting score threshold is set to 70% of the initial (highest) score
computed within the current region. The iterative annotation is
based on the assumption that the short template should maintain
a rather constant score when moved inside a helical region. There-
fore, as the template reaches the end of the region, the score de-
creases considerably and the expansion is stopped.

We note that the score threshold acts as an adjustable tolerance
for deviations from the ideal rod shape due to experimental noise
or reconstruction artifacts. In this work, we used a relatively strin-
gent 80% threshold for idealized (simulated) maps and more per-
missive thresholds of 55–70% for experimental maps. The
threshold levels were determined based on the observed perfor-
mance of the algorithm (see Sections 3 and 4).

Atomic structures of proteins exhibit both straight and bent
helices. Therefore, VolTrac considers the general case in which
helices may be curved. At each translation of the template, the
orientation is subject to refinement, following the curvature of
the region (see Fig. 1B). The translation center is stored as an axis
point of the predicted helix (Fig. 1C top). This predicted axis clo-
sely follows the known axis of the atomic structure (Fig. 1C bot-
tom), as is evident from a side-by-side comparison (Fig. 1C
center). The parameterization of the cylinder length and radius
was chosen so that a linear point density of �1.5 Å was achieved
in order to approximately match the point spacing of the known
axis. The predicted axes are exported in PDB format to be visual-
ized in an external program. We recommend our molecular
graphics program Sculptor (Birmanns et al., 2011), where ex-
ported helices can be rendered directly using tube or ribbon
representations.

2.4. Tabu search

Once a helical region is characterized by the bidirectional
expansion, it is appended to the tabu list and eliminated from fur-
ther exploration. A tabu region is defined about each translation
center of the template, i.e., the axis of the predicted helix. The ra-
dius of each exclusion sphere is set to 6 Å to generate overlapping
spheres for adjacent axis points, marking the entire length and
width of the helix. During the evolution, the templates are not al-
lowed to be placed within such tabu regions, i.e., their centers may
not be closer than 6 Å to the points in the tabu list. This strategy
prevents the algorithm from revisiting occupied regions, thereby
promoting more efficient exploration of other helical regions in
the map.

The previously described GA and bidirectional expansion steps
identify one helical region at a time and therefore need to be iter-
ated several times until all helical regions are identified. Each such
iteration starts with a new random population of short cylindrical
templates, while the tabu regions are preserved between
iterations.
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2.5. Stop criteria

The algorithm is iterated until a stop criterion is met. Without
loss of generality, it can be assumed that the number of helices
to be identified, denoted by N, is known either from prior struc-
tural data or sequence-based secondary structure prediction algo-
rithms. For a given N, the algorithm will stop exploring the cryo-
EM map when it has identified 3 � N helices. More than N helices
are investigated to allow for some imperfect ranking of the results,
thereby yielding a better exploration of the search space. If the
number of helices is not known a prior, the algorithm is stopped
once the map has been extensively explored as assessed by a cov-
erage rate, when it is impossible to place more templates into the
map due to the tabu regions, or when only short helices are anno-
tated for multiple consecutive iterations. In this case, more than
3 � N helices may be identified.

2.6. Ranking of predicted helices

The outcome of the algorithm is a list of helices described by the
translation centers of the template during the bidirectional expan-
sion (Fig. 1C). To facilitate the exploration of the results, the list is
sorted in a post-processing step using a correlation-weighted
length

LHelix ¼
½CCExpansion�2 � ½CCInterior�2

½CCExterior�2
� Len; ð3Þ

where Len represents the length of the helix (computed as the sum
of distances between adjacent points on the axis of the predicted
helix). The squared correlations in the fraction emphasize the scor-
ing function relative to the length of the helix: CCExpansion is the mean
normalized cross-correlation measured by the short cylindrical
template during the bidirectional expansion. CCInterior is the normal-
ized cross-correlation of the predicted axis. CCExterior is the normal-
ized cross-correlation of a 5 Å radius cylinder following the
predicted axis. The heuristic LHelix is high for long helices that have
high density around the axis and low density at the exterior.

2.7. Validation

We designed a range of tests on simulated and experimental
maps to assess the sensitivity and accuracy of the predictions affor-
ded by VolTrac. Experimental maps were selected from cases
where closely matching atomic structures were available from X-
ray crystallography. We created simulated maps by low-pass filter-
ing of atomic structures using Sculptor (Birmanns et al., 2011). Res-
olution values presented here correspond to the Situs convention
and they are smaller by a factor of 1.282 compared to EMAN (Lud-
tke et al., 1999); see Section 4 of Wriggers (2012). Anecdotal evi-
dence suggests that the Situs resolution values are close to
reported resolution values of experimental maps, whereas EMAN
convention, used in many earlier helix detection publications, is
close to the crystallographic resolution which tends to give some-
what larger direct space values.

The N top-ranked solutions (where N represents the known
number of helices) were selected for validation, and their perfor-
mances were quantified using point-based and helix-based mea-
sures. Point-based measures compare the points on the predicted
axes with points on the known axes (resulting from averaging coor-
dinates of four consecutive alpha carbons in the crystal structure):

� The point sensitivity (pSe) is defined as the percentage of
known points that were correctly predicted by VolTrac.
� The point positive predictive value (pPPV) is defined as the per-

centage of predicted points that correspond to known axis
points.
� The root mean square deviation (RMSD) of corresponding pre-
dicted and known axis points quantifies the separation of the
axes.

For these point measures (pSe, pPPV, and RMSD), a predicted
point is considered to match a known point if they are found with-
in 4 Å of each other. This tolerance was set in order to accommo-
date experimental maps that show minor conformational
differences from the crystal structure (Wriggers et al., 2000).

Helix-based measures directly compare the geometric proper-
ties of the predicted and known helices:

� The D Turns value is defined as the number of mismatched heli-
cal turns between two helices.
� The helix sensitivity (hSe) is the percentage of known helices

detected among the top N predicted helices. For this measure,
a known helix is considered to a true positive (TP), i.e., detected
by VolTrac, if a predicted helix at least partially overlaps and
aligns with its axis. For example, a reported hSe of 70.6%, where
N = 17, implies that 12 out of the 17 helices of the crystal struc-
ture were found among the top 17 predicted solutions. Typi-
cally, other known helices are identified as well, but they are
ranked lower in the list of solutions and not considered for
the hSe value.

3. Results

This section is organized as follows: first, the local normaliza-
tion of densities is demonstrated using an experimental map of
the chaperonin GroEL (Ludtke et al., 2004); then, a typical helix
extraction outcome is shown for an idealized (simulated) 8 Å reso-
lution GroEL map (Braig et al., 1995). To assess the performance of
VolTrac more systematically, we performed a series of tests using
simulated maps and six experimental maps at variable resolutions.

3.1. Local normalization

Experimental cryo-EM volumes may suffer from uneven density
distributions due to conformational disorder and alignment arti-
facts, with higher density exhibited at the core and a lower density
at the surface. For example, a GroEL map solved at 6 Å-resolution
(Ludtke et al., 2004) shows high densities in the equatorial domain,
whereas the apical domain appears weaker (Fig. 2A, B). Therefore,
to normalize the features across the map, the Gaussian-weighted
local normalization was applied (see Section 2). The resulting fil-
tered volume (Fig. 2C, D) shows a more uniform distribution of
density, bringing the equatorial and apical domains to a compara-
ble level (indicated by arrows in Fig. 2B, D). This balanced distribu-
tion of filtered densities was conserved at different isosurface
values, as observed by visual inspection in a molecular graphics
program (data not shown).

3.2. Application example

To demonstrate a typical VolTrac application, a GroEL monomer
(from PDB ID: 1OEL, (Braig et al., 1995) was low-pass filtered to 8 Å
resolution with a voxel size of 2 Å (Fig. 3A) the helix extraction was
executed on a locally normalized map using an expansion thresh-
old of 80% (see Methods). VolTrac identified all 17 known helices of
seven or more residues, placing 16 in the top 17 scoring solutions
(Fig. 3B and C) and the remaining one at rank 18. The total run time
for this example was 10.4 min (using an Intel I7–2600 processor at
3.4 GHz).

The ranking of the results using the empirical LHelix value (Eq.
(3)) performed well in this example. In the case of GroEL, the N
top results were divided into 16 true positives (the actual helices)



(A) (B) (C) (D)

Fig. 2. Gaussian-weighted local normalization applied to a 6 Å resolution experimental map of the chaperonin GroEL (EMDB ID: 1081, Ludtke et al., 2004). (A and B) The map
shows higher density values in the equatorial than in the apical domain (isolevel 0.59744). (C and D) After Gaussian-weighted local normalization, the map depicts
comparable density value across the map. Arrows indicate area of interest. The crystal structure of GroEL is shown as a reference in ribbon representation, with a-helices
depicted in yellow.

(A) (B) (C)

Fig. 3. (A) A simulated map obtained by low-pass filtering a GroEL monomer to 8 Å resolution is presented along with the helices predicted by VolTrac (represented as blue
tubes). (B) Side and (C) bottom views of VolTrac results (blue cylinders) overlapping the target crystal structure (a-helices represented as yellow ribbons).
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and one false positive. False positives may be found in rod-like re-
gions that do not correspond to alpha helices, for example (anti)
parallel b-sheets (Fig. 3C). On the other hand, false negatives repre-
sent correct helices that are found lower in the ranking (such as
rank 18 here), below the N top predictions. Our tests have shown
that these false negative helices either are of smaller size (�7–10
residues) or may lack the characteristic rod-like shape.

To measure the performance of VolTrac, we compute the hSe
value, i.e., the percentage of true positive helices predicted by Vol-
Trac, to hSe = 94.1%. The agreement between the predicted and
known axis points was characterized by the measures
pSe = 90.5%, pPPV = 86.8%, and RMSD = 0.68 Å. As a control, we re-
peated the calculation in the absence of the local normalization,
which was expected to perform less favorably (see Section 2).
The resulting performance measures without local normalization
were hSe = 76.4%, pSe = 89.6%, pPPV = 65.6%, and RMSD = 1.06 Å.

3.2.1. Performance as a function of resolution
For a systematic benchmark of VolTrac we generated simulated

maps from monomer GroEL structures (17 long helices of seven or
more residues; 57 kDa total molecular weight; Braig et al., 1995),
succinate dehydrogenase (33 long helices; 118 kDa; Yankovskaya
et al., 2003), and photosynthetic reaction center (34 long helices;
132 kDa; Baxter et al., 2004). The a-helical secondary structure
content ranged from 37% to 51% for these structures. Each struc-
ture was low-pass filtered to resolutions ranging from 6 Å to
10 Å (2 Å voxel size). A local normalization and an expansion
threshold of 80% were applied (see Methods). Fig. 4A–C shows
the helix and point-based performance measures hSe, pSe, pPPV,
and RMSD as a function of the resolution. The numeric values were
obtained as averages over three statistically independent runs.

Overall, VolTrac detected a-helices reliably up to �7 Å resolu-
tion, beyond which the performance started to degrade toe to the
loss of secondary structure detail. In all three cases the hSe was
typically above 70% (Fig. 4A) and the geometric accuracy of the
prediction was better than 1.4 Å (Fig. 4B). Moreover, the pSe esti-
mated on the axis points was better than 80%, indicating that
any missed helices were short, as they accounted for only a small
number of points (Fig. 4C). The pPPVs were systematically lower
than the corresponding pSe values, indicating a VolTrac bias to



(A)

(C) (D)

(B)

Fig. 4. (A–C) VolTrac performance validation as a function of resolution for the simulated maps of GroEL (PDB ID: 1OEL, 17 helices), succinate dehydrogenase (PDB ID: 1NEK,
33 helices), and photosynthetic reaction center (PDB ID: 1R2C, 34 helices) (A) Helix sensitivity hSe (see text). (B) RMSD of the helical axes. (C) The pSe and pPPV measures (see
text) based on the axis points. (D) Variation of pSe and pPPV as a function of the expansion threshold, plotted for the experimental map of GroEL solved at 7.8 Å resolution
(EMDB ID: 1200). Fig. 5E, F and the Table 2 show the results for an expansion threshold = 60%; The plotted values were obtained as averages over three statistically
independent runs.
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predict slightly longer helices than justified by the known struc-
ture. A more detailed inspection revealed that some axis points
were predicted at the ends of known helices, where occasionally
the backbone showed helix-like organization. We assumed that
such minor false positive predictions would be preferable to false
negatives. If desired, a user could reduce the resulting helix length
by increasing the default score threshold in the bidirectional
expansion (see Methods).

The helix sensitivity, hSe, of GroEL surpasses that of the other
two cases. This result may have been influenced by the relatively
small number of helices of GroEL, 17 compared to 33/34 in the
other test cases. Short helices ranked lower in the list drop in
and out of the top N = 17 solutions, resulting in possibly larger fluc-
tuations for GroEL hSe. In the two other test cases, the sensitivities,
hSe and pSe, are highest for relatively lower resolutions 7–8 Å
(Fig. 4A and C). At this resolution, the rod-like shape of helices is
devoid of any helical structure (or side chains) and are therefore
easily detected using the cylindrical template.

3.3. Experimental validation

The above tests were based on idealized maps in the absence of
noise. To assess the performance of the algorithm on realistic cryo-
EM maps in the presence of noise and 3D reconstruction artifacts,
we chose six benchmark maps for which atomic structures were
available as a control. Specifically, we used maps of GroEL at reso-
lutions of 4.2 Å (Ludtke et al., 2008), 6.0 Å (Ludtke et al., 2004), and
7.8 Å (Stagg et al., 2006), a map of the 20S proteasome at 6.8 Å
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resolution (Rabl et al., 2008), a map of rice dwarf virus at 7.9 Å res-
olution (Liu et al., 2007), and a map of kinesin at 9 Å resolution
(Sindelar and Downing, 2007) (Table 1). Fig. 5 presents an over-
view of the six benchmark systems.

Local normalization and expansion thresholds ranging from 55%
to 70% were applied (see Section 2 and Table 2). In some cases, the
expansion thresholds were adjusted from the 70% default value to
optimize the hSe measure, depending on the quality of a particular
map. Similar to the simulated test cases, different performance
measures were assessed, which are presented in Table 2. As in
the simulated test cases, VolTrac predicted helices that were
slightly (�1–2 turns) longer compared to those in the crystal
structure.

Historically, GroEL was solved at increasing resolution by cryo-
EM, whereas initial reconstructions at 11–13 Å showed only the
overall shape of the chaperonin (Ranson et al., 2001; Ludtke
et al., 2001), secondary structure elements were detected in inter-
mediate resolution maps (Ludtke et al., 2004; Stagg et al., 2006),
and a recent map at 4.2 Å resolution even afforded a trace of the
protein backbone (Ludtke et al., 2008). VolTrac was executed here
for a single monomer (extraction of the monomer was performed
by masking the map using a docked atomic structure). Fig. 5A–F
shows the outcome of VolTrac for the three investigated GroEL
maps, depicting in blue the helices detected in the top N = 17 solu-
tions and in green the helices found lower in the list. Overall, the
observed hSe values varied between 70.6% and 82.4% (Table 2).
Similar values were also identified for pSe (66.4–86.3%). The axis
RMSD values were below 2.06 Å.

The GroEL tests show that the accuracy of VolTrac depends on
the quality of a particular map. As expected, the performance
was best for the 4.2 Å map (as judged by TP, hSe, pPPV, RMSD,
and DTurns measures). The 6.0 Å map, despite its relatively high
resolution, required a particularly low expansion threshold of
55% to accommodate visible variations in the rod densities.

The other three systems in the experimental benchmark mea-
sured helix-based hSe values ranging from 78.2% to 100%, and axis
point-based pSe values ranging from 74.3% to 100.0% (Table 2).
VolTrac performance was essentially perfect for the 20S protea-
some at 6.8 Å resolution (Fig. 5G,H), where the algorithm predicted
all 11 helices with an RMSD of 1.10 Å and DTurns of 0.4. In compar-
ison, the slightly lower resolution rice dwarf virus and kinesin
cases exhibited RMSD values of 1.12 and 1.33 Å, respectively, and
DTurns values of 1.4 and 1.17, respectively, when compared to
the crystal structure (Fig. 5I-L).

To investigate the effect of the expansion threshold, we tested
VolTrac on the experimental map of GroEL solved at 7.8 Å resolu-
tion. Fig. 4D shows the computed point sensitivity (pSe) and point
positive predictive value (pPPV) for expansion threshold values
ranging from 50% to 80%. At low threshold values, the pSe is high,
indicating that a large number of points of the real helix axes are
properly predicted by VolTrac. The pPPV is rather low as the algo-
rithm tends to over-estimate the length of the helices, due the tem-
plate expanding beyond the length of the actual helix. On the other
Table 1
Experimental systems used for validation. Although the systems are multimeric, for the p
Dwarf Virus test that already shows one monomer, the monomers were extracted by mas
Moreover, the masked maps were zero-padded with a 15 Å-wide boundary.

System units EMDB ID Resolution (Å) Voxel siz

GroEL 5001 4.2 1.06
GroEL 1081 6.0 2.08
GroEL 1200 7.8 2.28
Proteasome 1740 6.8 1.38
Rice Dwarf Virus 1376 7.9 1.49
Kinesin 1340 9.0 2.00

Dimension – size of the map in voxels; PDB ID - ID of the corresponding high-resolutio
hand, when the expansion threshold is high, the pSe decreases, yet
the pPPV is considerably enhanced indicating that most of the pre-
dicted axis points correspond to real helix axis points. In choosing
the values of the expansion threshold, one wishes to maintain a
balance between the pPPV and pSe that allows reasonable values
for both indicators, i.e., predict as many of the points of the axis
of the real helix with reduced false positives. Fig. 5E, F and Table
2 show the results obtained for an expansion threshold equal to
60%.

The execution time of VolTrac is largely independent of the size
of the map. The time mainly depends on the number of helices to
identify. For example, the map of GroEL at 7.8 Å resolution has the
same dimension as kinesin (Table 1), yet the times vary with 12
and 20 min, respectively (Table 2). Overall the execution times ran-
ged from 9.3 to 39 min (on an Inter I7–2300 Processor at 3.4 GHz).

4. Discussion

VolTrac combines a genetic algorithm, a bidirectional expan-
sion, and a tabu search strategy to trace alpha-helical densities in
cryo-EM maps. The genetic algorithm performs a global search to
identify fragments of helical regions, while the bidirectional
expansion determines the curvature and length of the entire re-
gion. As the algorithm annotates the helices, they are placed in
the tabu list to prevent them from being revisited later in the
search.

VolTrac is fully automatic and only required a rough estimate of
the number of helices, and a selection of the score threshold in the
bidirectional expansion (see below). Similar to earlier approaches
by other groups, VolTrac was designed under the assumption that
a-helices can be identified as rod-like densities in cryo-EM maps.
However, VolTrac also considers the possibility of curvature based
on the observed shape of a-helices in high-resolution structures.
The bending of a helix is characterized in the bidirectional expan-
sion by using a short cylindrical template that traces the rod-like
feature. Such a strategy has the advantage of rendering the helical
axes as smooth continuous curves that follow closely the curvature
of the true helical axes, as illustrated in Fig. 1C (center) and by the
low RMSD values (Fig. 4 center and Table 2). As opposed to ap-
proaches such as Helix/SSEhunter (Jiang et al., 2001; Baker et al.,
2007) or EMatch (Lasker et al., 2005), VolTrac predicts a single con-
tiguous helix instead of several piecewise straight cylinders.
Although the building of complete atomic models was not an
aim of this paper, such curved predictions might facilitate the
atomic level tracking of the molecular structure. Similar to our ap-
proach, Dal Palù and colleagues have implemented curvature (Dal
Palù et al., 2006) in a gradient-based technique, yet no validation
was provided on experimental maps where the noise may consid-
erably affect the outcome.

VolTrac reliably detected a-helices in simulated maps of 6–10 Å
resolution and in experimental maps of 4–9 Å resolution, with a
true positive accuracy ranging from 70.6% to 100%, as estimated
in experimental settings. Although low resolution maps did fare
urpose of the validation we only used one monomer. With the exception of the Rice
king with the know high resolution structure of the monomer (indicated by PDB ID).

e (Å) Dimensions (voxels) PDB ID Helix count

86x86x97 3CAU 17
46x45x50 1OEL 17
43x42x46 1OEL 17
69x58x81 3C92 11
75x113x75 1UF2 33
44x45x68 1JFF 23

n structure; Helix Count - total number of helices with 7 or more residues.
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Fig. 5. VolTrac predictions for the experimental cryo-EM maps of GroEL (EMDB ID: 5001, 1081, 1200), 20S proteasome (EMDB ID: 1740), rice dwarf virus (EMDB ID: 1376),
and kinesin (EMDB ID: 1340). The predictions are depicted using tube representations, blue for the helices predicted in the top N (column ’Helix count’ in Table 2) scoring
solutions, and green for false negatives ranked lower in the list of solutions. False positive predictions are not shown. Cryo-EM maps are shown in gray transparent surfaces,
and the corresponding crystal structures (column ’PDB ID’ in Table 2) use a yellow ribbon representation for the a-helices.

Table 2
VolTrac performance for experimental systems.

System (EMDB ID) Helix count TP Total TP (Rank) hSe pSe pPPV D Turns RMSD (Å) Run time (min) Expansion threshold

GroEL - 5001 17 14 16 (33) 82.4 86.3 81.7 0.80 1.14 14.4 70%
GroEL - 1081 17 12 16 (42) 70.6 70.9 73.6 1.20 2.06 12.3 55%
GroEL - 1200 17 12 17 (40) 70.6 66.4 70.1 1.10 1.76 9.8 60%
Proteasome – 1740 11 11 11 (11) 100 100.0 92.2 0.40 1.10 9.3 65%
Rice Dwarf Virus – 1376 33 26 33 (57) 78.8 86.5 69.2 1.40 1.12 39.0 70%
Kinesin – 1340 23 18 21 (27) 78.2 74.3 66.0 1.17 1.33 20.2 70%

Helix Count – total number of helices with 7 or more residues; TP - True Positive; Total TP - total number of known helices predicted; Rank - rank where the last helix was
found (where 0 represents the best scoring helix); hSe - helix sensitivity (see text); pSe - point sensitivity; pPPV - point positive predictive value; D Turns - difference in
number of turns between predicted and known helices; RMSD - root mean square deviation; Run time - execution time for the algorithm; Expansion threshold - stop criteria
for the bidirectional expansion (see Section 2 for definition).
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worse, we did not observe a clear correlation between performance
and map resolution in experimental maps, as the results in the 4–
7 Å resolution range depended on the particular experimental sys-
tem and on the reconstruction quality.

False negatives often correspond to helices of short length or to
those that fail to show the characteristic cylindrical rod shape.
Such helices are often still detected but ranked lower in the solu-
tions list. A visual inspection of the results may allow for the selec-
tion of such helices according to prior knowledge of the system. To
reduce the risk of such false negatives, an user could lower the
expansion threshold. The default value of the expansion threshold
parameter was set to 70% for our experimental test cases, but it
may be lowered to 50–60% for challenging maps that exhibit noisy
helical features. Decreasing the value of the parameter entails a
reduction in the pPPV and an increase in the length of predicted
helices, so there is a tradeoff between tolerance and helical length.
In our experimental test cases we were able to optimize the
threshold based on the observed hSe values using known atomic
structures. If crystal structures are unavailable, docking models
may be substituted, or the user may use sequence-based secondary
structure prediction (Jones, 1999; Cole et al., 2008; Meiler et al.,
2001; Meiler and Baker, 2003; Karplus et al., 1997; Chandonia
and Karplus, 1999) as a control.

We recommend to choose a starting expansion threshold value
of 70% and decrease this value if the noise in the experimental map
causes the helices to break into disconnected segments when com-
pared with secondary structure prediction. In such a situation, the
expansion threshold should be decreased progressively until heli-
ces are properly traced even when noise is present in the density.
Such a decrease in expansion threshold will allow the template to
navigate along the helix even when lower densities or gaps are
present within the region. However, an extremely low expansion
threshold may have detrimental effects on the results as template
may ‘bleed’ into non-helical features.

Along with the expansion threshold, the dimensions of the tem-
plate may also influence the outcome. By default a template with a
1 Å radius and a length of 8 Å is used. Although the radius is much
smaller than the radius of a helix, the template allowed the proper
tracing of the helical regions as opposed to values of 1.5 or 2 Å
(data not shown). These results are due to the thinning of the
map caused by the local normalization. Longer templates may be
employed, but they are more prone to the ’bleeding’ into not-heli-
cal regions and may encounter difficulties in properly tracing short
helices.

Although rod-like densities typically correspond to a-helices,
other structural elements may display similar patterns and gener-
ate false positives. Examples include the (anti) parallel b-sheet,
which exhibits a smaller rod radius than the helices. An inspection
of VolTrac results would permit the manual removal of such false
positives. Moreover, several a-helices may occasionally be found
in sequence, which become blended into a long cylinder without
clear ends between distinct sub-helices. Such situations require
additional information regarding the a-helix composition of the
system, such as sequence-based secondary structure prediction,
in order to identify the ends of any sub-helices. Sequence-based
prediction methods may also be helpful in situations where the
number of helices, N, is not known a priori. To allow for some lee-
way, we recommend to set the value of N to 10% above the value
from the sequence based secondary structure prediction.

In summary, a number of new parameters were introduced for
the algorithmic components of VolTrac. These parameters were de-
rived based on geometric considerations and were tested empiri-
cally, as is typical for a proof-of-concept paper. We found that
the performance of VolTrac was robust for the systems under
investigation, but a more systematic refinement of the parameter
values could be performed in future research. Based on our experi-
ence, these parameters (with the exception of the expansion
threshold) should not require any fine-tuning by the user.

VolTrac incorporates parallel computing strategies to take
advantage of the multi-core architecture of current workstations.
Multiple genetic algorithm runs are launched in parallel. Although
independent of each other, the parallel threads use a common tabu
list. Each parallel run is finalized by a bidirectional expansion and
by a global update of the tabu list before being re-launched until
one of the stop criteria is met. The parallel implementation intro-
duces an additional complexity: It is possible that two parallel runs
independently identify the same helical region prior to its addition
to the global tabu list. To eliminate such redundancies, the predic-
tions are checked for overlap (using a distance criterion based on
the known map resolution) and the lower scoring one is discarded
when overlap is found. Due to the multi-threaded approach, a typ-
ical VolTrac run takes only minutes on a modern workstation. The
run time may be decreased by reducing the sampling in the genetic
algorithm or in the bidirectional expansion. Our default parame-
ters currently favor sampling over efficiency to ensure a near-con-
tinuous exploration of the map. Specifically, we employ an angular
step of 1� in contrast to earlier template convolution algorithms
such as (Lasker et al., 2005) that employ larger angular steps up
to 15�.

During iterative optimization, VolTrac often determines high-
ranking helices first. Such characteristics prompted us to integrate
VolTrac into the interactive graphics software Sculptor (Birmanns
et al., 2011). The user can investigate the results on the fly as they
are generated and stop the execution early if desired. VolTrac was
included in Sculptor version 2.1, available at URL http://sculp-
tor.biomachina.org. Because Sculptor is primarily intended to func-
tion as an interactive graphics program, it can become impractical
to wait several minutes for results. Therefore, we have also added a
full-featured (and parallelized) version of VolTrac as a command
line tool to the Situs package, version 2.7, available at URL http://
situs.biomachina.org. All our software is free, open source, and
can be used on Linux, Macintosh or Windows computers.
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