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A structural characterization of multi-component cellular assemblies is essential to explain the mecha-
nisms governing biological function. Macromolecular architectures may be revealed by integrating infor-
mation collected from various biophysical sources – for instance, by interpreting low-resolution electron
cryomicroscopy reconstructions in relation to the crystal structures of the constituent fragments. A
simultaneous registration of multiple components is beneficial when building atomic models as it intro-
duces additional spatial constraints to facilitate the native placement inside the map. The high-dimen-
sional nature of such a search problem prevents the exhaustive exploration of all possible solutions.
Here we introduce a novel method based on genetic algorithms, for the efficient exploration of the
multi-body registration search space. The classic scheme of a genetic algorithm was enhanced with
new genetic operations, tabu search and parallel computing strategies and validated on a benchmark
of synthetic and experimental cryo-EM datasets. Even at a low level of detail, for example 35–40 Å, the
technique successfully registered multiple component biomolecules, measuring accuracies within one
order of magnitude of the nominal resolutions of the maps. The algorithm was implemented using the
Sculptor molecular modeling framework, which also provides a user-friendly graphical interface and
enables an instantaneous, visual exploration of intermediate solutions.

Published by Elsevier Inc.
1. Introduction tems in near-native environments. Two-dimensional projections
Fundamental biological processes such as DNA transcription,
protein translation or cellular transport are efficiently carried out
by macromolecular assemblies through the coordinated interac-
tion of their constituent biomolecules (Alberts, 1998). Thousands
of different macromolecules coexist at a given time inside a cell,
but only few have a well-characterized molecular mechanism (Sali
et al., 2003). The structural description of such assemblies is crucial
to explain their functional behaviors. X-ray crystallography, a main
source of high-resolution information, solved structures of cellular
assemblies such as the ribosome (Ban et al., 2000; Wimberly et al.,
2000) or RNA polymerase II (Gnatt et al., 2001). However, multi-
component complexes are refractory to structural determination
by crystallography due to their large size and intrinsic flexibility.
Therefore, crystal structures are often available only for individual
fragments.

Alternatively, electron cryomicroscopy (cryo-EM) is an imaging
technique suitable for the structural characterization of large sys-
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s).
are collected from the sample in solution and used for the recon-
struction of a 3D volumetric map (DeRosier and Klug, 1968).
Although the number of cryo-EM maps determined at high-resolu-
tions (3–5 Å) has considerably increased over the last decade, low-
resolution maps are still commonly obtained for asymmetric or/
and dynamic assemblies. Such cryo-EM reconstructions provide
information about the overall shape of macromolecules, but their
reduced level of detail prevents a direct atomic characterization.
Yet, such low-resolution cryo-EM maps may be interpreted in rela-
tion to the crystal structure of component fragments through the
application of multi-resolution modeling techniques.

Hybrid approaches are employed to integrate information from
various biophysical sources, including, but not restricted to, X-ray
crystallography and cryo-EM (Baumeister and Steven, 2000).
Atomic models of low-resolution cryo-EM maps may be generated
by docking the atomic structure of the constituent biomolecules.
Such models are often obtained by independently placing each
fragment either using interactive molecular graphics software
(Pettersen et al., 2004; Birmanns and Wriggers, 2007) or by
employing automatic techniques to optimize a goodness-of-fit
measure. The optimization may be constrained to rigid-body trans-
formations – translations and rotations (Wriggers and Birmanns,
2001; Volkmann and Hanein, 1999; Roseman, 2000; Rossmann
et al., 2001; Ceulemans and Russell, 2004; Jiang et al., 2001; Garzón
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et al., 2007) but can also include flexible deformations (Wriggers
et al., 2000; Rusu et al., 2008).

Simultaneous registration of multiple subunits is beneficial to
identify their native spatial organization inside the assembly. The
additional information thus introduced provides spatial con-
straints that facilitate proper docking and prevent steric clashing.
At low resolutions, independently fitted fragments may measure
maximal correlations at the interior of the maps, where densities
are high, but far from their correct docking position. Such spurious
solutions are caused by the reduced interior detail of the recon-
struction and/or due to the resolution heterogeneities (Wriggers
and Chacón, 2001). By simultaneously registering all constituents,
major steric clashes are limited as the correlation scores would be
reduced for such cases.

Although valuable, such a simultaneous registration has a pro-
hibitive computational cost. Identifying the optimal docking of one
probe involves the exploration of six degrees of freedom. As the
number of fragments increases, the dimensionality of the search
space grows exponentially with a complexity of Oðn6NÞ, where N is
the number of registered pieces. Albeit an exhaustive exploration
of all possible rotations and translations can be achieved for one
component (Wriggers and Birmanns, 2001), such investigation is
unfeasible as additional constituents are taken into account.

A possible approach to solve the multi-body registration prob-
lem, while overcoming the computational complexity of an
exhaustive exploration, involves limiting the search to a portion
of the space. Computational techniques were proposed following
this strategy. Some iteratively refine one component at the time
while either masking the others (Volkmann and Hanein, 1999) or
removing the occupied volumes of already docked fragments
(Rossmann et al., 2001). Other methods are inspired from crystal-
lographic refinement, and assume that an overall correct place-
ment is already known before performing a local simultaneous
refinement in real (Chapman, 1995; Gao et al., 2003) or reciprocal
(Huber and Schneider, 1985) space. Recently, Lasker et al. proposed
a simultaneous global docking technique that discretizes the
search space around centroid points (Lasker et al., 2009).

Here we introduce a novel optimization technique for the simul-
taneous registration of multiple atomic structures into cryo-EM
envelopes. Based on a genetic algorithm, MOSAEC (Multi-Object
Fig. 1. Schematic rendering of MOSAEC. The atomic structure of the constituent fragmen
(left). Parallel computing strategies are implemented to exploit both the multi-core archi
search space (center). In each independent thread, MOSAEC follows the classic GA scheme
Simultaneous Alignment by Evolutionary Computing) makes no
assumption about the scoring landscape and enables the multi-body
global registration without restricting the search to a particular re-
gion. Genetic algorithms (GA) are heuristics inspired by evolutionary
biology, commonly employed to solve high-dimensional optimiza-
tion problems (Holland, 1975; Goldberg, 1989; Davis and Mitchell,
1991). Darwin’s concepts of natural selection and survival of the fit-
test (Darwin, 1859) are introduced in an iterative scheme to enable
the optimization of a scoring function. An abstract representation of
the solution is generated by converting the variable to be optimized
– here the rotation and translation of the constituents – into a linear
form known as a chromosome. A population of such individuals
adapts towards an optimal score following a process that mimics
biological evolution. In MOSAEC, we adapted the classic scheme of
a genetic algorithm to enhance the exploration of the search space.
New genetic operators were introduced to preserve the genetic
diversity of the population and were used in combination with par-
allel evolution of subpopulations. Moreover, the exploration of the
complex search space was improved by including tabu regions –
areas of the search space which are marked as local optima and
thereby should not be further sampled.

In the following section, we will describe MOSAEC by first giv-
ing an overview of the method followed by the details of the imple-
mentation. Then, in Section 3, we present the testing and
validation of the algorithm on a series of synthetic and experimen-
tal datasets. We conclude with a discussion of the results.

2. Material and methods

MOSAEC is an optimization technique derived from genetic
algorithms (GAs) that explores and identifies optima in the highly
dimensional search space of the multi-body registration problem.
An overview of the procedure is given next (also summarized in
Fig. 1) followed by a more detailed description of MOSAEC’s
implementation.

2.1. Genetic algorithms

GAs are computational methods that mimic biological evolution
to optimize a scoring function. These algorithms integrate the
ts and the volumetric map of the entire assembly are used as input for the algorithm
tecture of current computers and the ability of GAs to explore different paths in the
which was enhanced with new genetic operators and tabu search strategies (right).
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concept of natural selection and survival of the fittest, in an itera-
tive scheme that progressively improves the solution while explor-
ing the parameter search space (Holland, 1975; Goldberg, 1989;
Davis and Mitchell, 1991). Evolutionary algorithms such as GAs
can be distinguished from the other optimization techniques as
they consider a population of solutions instead of just a single
one at a given point in time. The individuals in this population
are a linear representation of the parameters to be optimized
(see Section 2.1.1 on how the multi-body registration problem is
represented). Each such individual has a fitness value that indi-
cates the optimality of the solution, i.e. the scoring evaluated for
the encoded parameters. The algorithm starts with a set of individ-
uals initialized through a random sampling of the search space.
This population iteratively evolves under the influence of genetic
operators while maximizing the fitness function, here the cross-
correlation coefficient of the encoded atomic model and the target
map. At each generation, a reproduction pool is selected with prob-
abilities proportional to the fitness of the individuals. Recombina-
tion and mutation are applied to these solutions (Sections 2.1.2 and
2.1.3), as well as novel genetic operators (see description in the
Section 2.1.4). Following mating, an improved population is se-
lected based on an elitist reinsertion scheme detailed in Sec-
tion 2.1.5, which ensures that better scoring individuals have
higher chances to reproduce. Following this scheme that mimics
mating, the scoring function is optimized progressively as better
individuals are selected for the future generations. Also, tabu re-
gions are introduced during reinsertion to prevent unnecessary
explorations of regions marked as local optima (see Section 2.1.6).
Moreover, MOSAEC exploits the stochastic nature of evolutionary
strategies by allowing subpopulations to evolve in parallel (see
description in Section 2.2).

2.1.1. Encoding of a candidate solution
Each individual in the population represents an atomic model of

the entire assembly, encoded as a linear string of real-valued genes
representing translations and rotations of the constituent frag-
ments. Individuals are composed of 4N genes ½. . . ; xi; yi; zi; ri; . . .�,
i ¼ 1 . . . N where N is the number of components, xi; yi; zi represent
the translation (in the space defined by the cryo-EM map) and ri

corresponds to an index in a list of rotational angles. This list pro-
vides a complete and uniform coverage of the 3D rotational space,
reducing the search dimensionality (from 3 to 1) while at the same
time avoiding gimbal lock problems. Each individual has associ-
ated a fitness value that quantifies the optimality of the solution
they represent, i.e. the overlap between the multi-component
model and the cryo-EM map (see detailed description below).

The evolution starts with a population of n individuals ran-
domly sampling the search space. In MOSAEC, this initial group
of individuals is distributed over P threads that evolve indepen-
dently in parallel. Without loss of generality, we consider in the
following that P ¼ 1 and treat the case P > 1 in a later section.
For each generation, the first step consists in selecting the individ-
uals that are allowed to reproduce following a linear ranking
scheme (Baker, 1985) in which higher mating probabilities are gi-
ven to fittest individuals. The selected solutions undergo a process
that simulates mating in which genetic operators such as recombi-
nation and mutation are applied to generate a population of
offspring.

2.1.2. Recombination
The crossover operator enables the recombination of two ‘‘par-

ent” individuals to create one or two offspring. The new individ-
ual(s) inherit(s) genes from the parents following a stochastic
process that swaps/alters them following different schemes. For in-
stance, the one-point crossover generates two offspring by swap-
ping parental genes at only one location:
Parent 1 : ½ . . . xi yi zi ri . . . �
Parent 2 : ½ . . . Xi Yi Zi Ri . . . �
Offspring 1 : ½ . . . xi yi Zi Ri . . . �
Offspring 2 : ½ . . . Xi Yi zi ri . . . �

while other schemes use multiple crossover locations, e.g. two-
point or uniform crossover. Schemes may also generate only one
offspring by applying arithmetic operations such as averaging. The
recombination through crossover is based on the building block
hypothesis which considers that better individuals may be gener-
ated from the best partial solutions of previous generations. This
process enables a guided and efficient exploration of the search
space.

MOSAEC stochastically applies each of these schemes.

2.1.3. Mutation
This operator takes a single individual and alters its genes cre-

ating a contiguous individual. Similar to the crossover, different
schemes have been defined and used in MOSAEC, some randomly
modifying the genes while other schemes only introduce small
variations. Although such adjustments often model a bell curve,
in MOSAEC they follow a Cauchy distribution:

Cða; b; xÞ ¼ b=ðp � ðb2 þ ðx� aÞ2ÞÞ ð1Þ

where a is the statistical median and b > 0 corresponds to the half-
width at half-maximum. Similar to the normal distributions, Cau-
chy distributions have high probabilities to create small variations,
however it also introduces larger changes which help the algorithm
to escape from local optima.

2.1.4. New genetic operators in MOSAEC
In addition to the recombination and mutation, MOSAEC also

introduces two new genetic operators to enhance the exploration
and exploitation of the search space. A systematic operator applies
stochastic mutations to all individuals in the population. Although
computationally expensive, this operator was shown in our tests to
be helpful for the identification of a global optima. The second no-
vel operator introduced in MOSAEC applies ten Cauchy mutations
to each gene of the fittest individual, thereby accelerating the local
refinement.

2.1.5. Reinsertion
Following mating, 2 � nþ 1 new individuals are created: n from

the reproduction pool via crossover and mutation, another n from
the systematic mutation operator and eventually one from local
search around the fittest individual. After evaluating their fitness,
these individuals are merged with the n solutions of the original
population, creating a pool of 3 � nþ 1 individuals, from which
only the best n will be selected for the next generation.

MOSAEC applies a reinsertion scheme based on the elitist selec-
tion with fitness penalties for highly similar individuals. Classic
elitist schemes conserve the fittest individuals typically without
enforcing preservation of the genetic diversity. Maintaining a het-
erogeneous population is essential when solving optimization
problems, in particular for complex cases that show multiple local
optima. In MOSAEC, highly similar individuals are penalized if their
gene distance (square root mean deviation of the gene values) is
below a threshold inducing a decrease in fitness value (default
by 10%).

2.1.6. Tabu search
The exploration of the search space was enhanced in MOSAEC

by introducing a tabu search strategy to prevent premature con-
vergence to local optima. Such strategies are heuristics that com-
bine local searches with adaptive memory to store the solutions
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(Glover, 1986). MOSAEC considers a region as tabu, if the fittest
individual has essentially not improved over the past (T ¼ 30) gen-
erations. When a tabu region is introduced, the fittest individual is
preserved in the list of optima and the region around it is consid-
ered prohibited and not allowed further exploration. MOSAEC
introduces by default small tabu regions to prevent that they con-
tain more than one local optima. At the end of the run, the list of
optima is examined and the top ten fittest individuals are refined.
2.2. Parallel evolution

Due to the stochastic nature of GAs, independent executions of
the algorithm with the same initial population may result in the
exploration of different regions of the search space. To take advan-
tage of such a behavior, we modified the classic scheme of a GA to
allow an independent evolution of subpopulations followed by a
horizontal gene transfer. Identical subpopulations are distributed
on different threads and are permitted to evolve for a small num-
ber of generations (100 generations by default). If our implementa-
tion is executed on a multi-core machine, such independent
evolutions can run in parallel on different processing units. The
user can choose the number of independent threads that will run
in parallel, which typically should be the same as the number of
cores available in the system. At the end of each cycle, the resulting
subpopulations are merged and only the top individuals are se-
lected (same number as in the initial subpopulation). This cycle
is repeated until the total number of generations is achieved
(Fig. 1).
Table 1
Biomolecular systems used for the validation of MOSAEC.

Systems PDB ID # Atoms # Parts References

Oxido-reductase 1NIC 7908 3 Adman et al. (1995)
Catalase 1QQW 16,048 4 Ko et al. (2000)
IjBa=NF—jB complex 1IKN 4767 4 Huxford et al. (1998)
Helicase 1XMV 13,338 6 Xing and Bell (2004)
GroEL 1OEL 26,929 7 Braig et al. (1995)
2.3. Fitness evaluation

Each individual in the population has a fitness value that quan-
tifies the optimality of the solution it encodes. In MOSAEC, the fit-
ness is assessed using the standard cross-correlation coefficient
between the multi-component atomic model and the volumetric
map of the assembly as defined in Eq. (2). qcalc and qem are the di-
rect space density distributions of the model and of the cryo-EM
map, �q and rðqÞ are the average and, respectively, the standard
deviation of a distribution q while Ti represent the transformation
applied to the ith; i ¼ 1 . . . N component (both rotation and transla-
tion included). The density distribution qcalc has identical dimen-
sions as qem and was obtained by projecting the atoms of the
model onto a 3D lattice followed by a Gaussian blurring. Similar
cross-correlation coefficients are employed by others, see Wriggers
and Chacón (2001) for a review.

CCCð. . . ; Ti; . . .Þ

¼

R
qemðrÞ � qemð Þ � qcalcð. . . ; Ti; . . . ; rÞ � qcalcð. . . ; Ti; . . .Þ

� �
d3r

rðqemÞ � rðqcalcð. . . ; Ti; . . .ÞÞ
ð2Þ

A coarse version of the cross-correlation coefficient was also
implemented in MOSAEC to accelerate the execution. This score
is computed following Eq. (2) using coarse representations for
qcalc and qem. Topology-representing networks (TRN) were applied
on the model to generate a simplified representation using feature
points (Wriggers et al., 1998). Such clustering techniques have
been frequently employed in multi-resolution modeling of cryo-
EM data (Wriggers et al., 1999, 2000; Birmanns and Wriggers,
2003; Birmanns and Wriggers, 2007; Rusu et al., 2008). These fea-
ture points were then projected onto the 3D lattice and low-pass
filtered with a Gaussian kernel. Moreover, tri-linear interpolation
can optionally be applied in MOSAEC to reduce the dimensions
of the map qem, for a further decrease in computational cost.
Fitness values in MOSAEC can be computed following the before
mentioned forms of cross-correlation coefficients, whereby,
according to our tests, even the coarse version is sufficient to iden-
tify global optima up to resolutions of 35–40 Å. Note that contour
enhancing filters, such as the Laplacian, were not applied in our
validations, nor additional terms to penalize overlap between
fragments.
3. Results

The performance of the method was assessed on multiple syn-
thetic and experimental datasets. In this section, we present the re-
sults of this evaluation along with a study of the cross-correlation
coefficient landscape in a simultaneous versus an independent
registration.
3.1. Synthetic datasets

The benchmark for the validation of MOSAEC included simu-
lated datasets of several biomolecular systems (Table 1). The com-
ponent domains of these complexes were simultaneously docked
into the volumetric map of the entire assembly, generated by
Gaussian low-pass filtering to different resolutions. The best atom-
ic model generated (measuring the highest cross-correlation coef-
ficient during the run) was then compared with the native
configuration of the assembly, as defined by the crystal structure.

First, we present the progress of the best atomic model during a
run for the pentamer Succinate Dehydrogenase (PDB ID 1NEK, Yan-
kovskaya et al., 2003). This system was chosen to demonstrate the
ability of the algorithm to explore a complex search space and to
identify the global optima. Four fragments, of different size and
shape, were registered into a 10 Å-resolution synthetic map.
Fig. 2 shows the evolution of the best score over multiple itera-
tions. Starting with a random distribution of the fragments, MO-
SAEC increases the scoring function within the first generations
by placing all components inside the molecular envelope, but this
placement is not optimal yet. As the evolution progresses further,
the algorithm identifies the correct translation and rotation of each
fragment, where often the large domains are found first, followed
later by the smaller ones (see thumbnails in Fig. 2). Identification
of a native configuration is facilitated by the insertion of tabu re-
gions as they enhance the investigation of unexplored areas within
the search space.

Moreover, the independent parallel evolution of subpopula-
tions, followed by horizontal gene transfer, also enhances the sam-
pling as different paths are explored at the same time. Indeed, we
can observe in Fig. 2 that different scores and local optima are
reached in the parallel evolution, for example between generations
100 and 200. However, the horizontal gene transfer ensures that
the best optima are conserved and that the diversity of the popu-
lation is maintained.

In a second step, we put MOSAEC to a stringent test to assess
the performance of the algorithm at different resolutions. The bio-
molecular systems presented in Table 1 were used for validation at
resolutions ranging between 6 and 40 Å. These systems have



Fig. 2. The evolution of the best score during a MOSAEC run in which four fragments were simultaneously docked into a 10 Å resolution map of Succinate Dehydrogenase
(PDB ID 1NEK).
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different complexities, some only require the registration of three
fragments while others have up to seven components. At each
run, the root mean squared deviation (RMSD), measured in
Ångström (Å), between the best atomic model and the native con-
figuration was measured and plotted in Fig. 3. These tests indicated
that MOSAEC was successful in simultaneously docking multiple
fragments up to 40 Å resolution, with accuracies within one order
of magnitude of the nominal resolution of maps.

3.2. Experimental datasets

The performance of the method was also assessed using exper-
imental datasets. We performed a simultaneous registration of the
bacterial ribosome and of the chaperonin GroEL.

The ribosome is the macromolecular assembly responsible for
the protein translation, that enables the synthesis of polypeptide
Fig. 3. The accuracy of MOSAEC estimated in synthetic test cases at different
resolutions. Root mean squared deviations (RMSD) were measured between the
model generated and the known solution (values computed for all atoms and
shown in Ångström (Å)).
chains using the genetic information of the messenger RNA
(Ramakrishnan, 2002; Mitra and Frank, 2006). Ribosomes are com-
plexes of RNAs and proteins, and are organized into two subunits
(Yusupov et al., 2001). We carried out the simultaneous docking
of these two fragments (PDB IDs 1GIX, 1GIY, Yusupov et al.,
2001) into the cryo-EM map of the assembly solved at 14 Å resolu-
tion (ID: emd-1005, Klaholz et al., 2003). MOSAEC successfully
identified a native configuration (Fig. 4), although only trace atoms
were available for the crystal structures of the subunits. The model
thus generated measures a 7.03 Å RMSD from the one proposed by
the authors of the map, but it improved the cross-correlation coef-
ficient from 0.286 to 0.321 (measurement on alpha carbons and
phosphates).

GroEL is a bacterial chaperonin that in association with co-chap-
eronin GroES is involved in the folding of proteins (Sigler et al.,
1998; Saibil, 2000; Fenton and Horwich, 2003). Our validation in-
cludes the cryo-EM map of GroEL alone as a double heptameric
ring which displays a barrel-shape architecture. Fourteen mono-
mers were simultaneously docked (PDB ID 1OEL, Braig et al.,
1995) into the 11.5 Å resolution map (emd-1080, Ludtke et al.,
2001). MOSAEC properly placed all these components, displaying
a correlation coefficient of 0.947 with the experimental map
(Fig. 4).

3.3. Scoring landscape in simultaneous versus independent
registration

Although MOSAEC introduces a novel optimization technique,
the scoring function used to assess the model is the classic den-
sity-based cross-correlation coefficient (used in similar forms by
other programs (Kleywegt and Jones, 1997; Wriggers et al., 1999;
Volkmann and Hanein, 1999; Roseman, 2000; Rossmann et al.,
2001). This goodness-of-fit measure is computed in MOSAEC using
all component fragments in the model (see Eq. (2)). Yet, one can
independently dock each fragment at a time using readily available
techniques (Wriggers et al., 1999; Volkmann and Hanein, 1999;
Roseman, 2000; Rossmann et al., 2001) and assemble a complete
model from the top scoring solutions. This model will not necessar-
ily maximize Eq. (2), but the additive measure:



Fig. 4. Experimental benchmark: (Left) ribosome – two subunits docked into a 14 Å-resolution map (emd-1005); (Right) chaperonin GroEL – 14 monomers fitted into the
11.5 Å resolution map (emd-1080).
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CCCRðT1; � � � ; TNÞ ¼
XN

i¼1

CCCðTiÞ ð3Þ

where Ti is the transformation that includes both translation and
rotation of the ith; i ¼ 1 . . . N fragment, and CCCðTiÞ corresponds to
the cross-correlation coefficient as defined in Eq. (2). In the following,
we investigate such a strategy and compare it with the simultaneous
registration procedure proposed in MOSAEC. The discrepancies be-
tween the two approaches are shown by plotting the score landscape
of Eqs. (2) and (3) when fitting the three domains of homo-trimer oxi-
do-reductase (PDB ID 1NIC) into a 15 Å-resolution map. The high
dimensionality of such a tri-body registration problem prevents the
exhaustive exploration of all (18) degrees of freedom and, moreover,
renders it difficult to visualize the results. Hence, here we show the
landscape obtained when the position of only one fragment is vari-
able within the plane known to contain the solution (rotations are
all scanned), while the other two components are held fix at prede-
fined locations inside the map. These locked components either occu-
py the configuration of the crystal structure (Fig. 5A) or are placed at
the center of the map (Fig. 5C).

The first scenario, depicted in Fig. 5A, represent a simple opti-
mization problem in which only the configuration of one fragment
must be identified given that the remaining domains are already
properly docked inside the assembly. The multi-body correlation
CCC (Eq. (2)) shows a prominent peak at the correct docking posi-
tion (Fig. 5B), yet the maxima of the additive correlation is ob-
served far from this location (Fig. 5C). These results indicate that
optimization techniques may promptly identify the native place-
ment of the fragment using the multi-body correlation, but will
provide spurious solutions when scoring models with the additive
measure CCCR.

Fig. 5D shows a more difficult test in which the two fixed frag-
ments occupy non-optimal docking positions, at the interior of the
map. The multi-body correlation displays three peaks – one for
each of the identical monomers in the crystal structure (Fig. 5E).
Due to the placement of the fixed components, the mobile frag-
ment has three optimal scores instead of only one, as it can occupy
either one of the three correct positions. When using this multi-
body correlation score, optimization techniques are able to identify
the placement of the monomer at one of the correct docking posi-
tions even if the rest of the components are arbitrarily placed in-
side the envelope.

On the other hand, CCCR shows one global optima at the center
of the map, far from the correct docking locations (Fig. 5F). More-
over, this global optima scores higher than the best model in
Fig. 5C. Such landscape prevents the additive sum CCCR from iden-
tifying the proper docking position of the fragments, creating mod-
els that show considerable overlap between constituents. To
prevent such incorrect models, additive measures can be paired
with terms that penalize the overlap between fragments (Lasker
et al., 2009). Such multi-term scoring functions typically require
an extra parametrization step to identify the weights of each ele-
ment in the equation.
4. Discussion

In this paper, we described a method for the simultaneous reg-
istration of multiple component atomic structures into cryo-EM
volumetric maps of biomolecular assemblies. MOSAEC is a popula-
tion-based optimization technique designed to explore the intri-
cate and high-dimensional search space of the multi-body
docking problem. This approach is derived from genetic algorithms
and enhanced with parallel computing and tabu search strategies
to enable a better exploration of the scoring landscape.

MOSAEC successfully identified the spatial organization of con-
stituent fragments within the cryo-EM envelope of the assembly.
Our benchmark indicated that the algorithm is able to simulta-
neously register multiple component structures, identifying their
placement and orientation with accuracies within one order of
magnitude of the nominal resolution of the cryo-EM maps. Using
the classic cross-correlation coefficient as a scoring function, such
performance was observed for resolutions as low as 40 Å. Maps
with such low level of detail are typically beyond the reach of tra-
ditional docking methods that employ similar scores, but indepen-
dently fit each component (Chacón and Wriggers, 2002).

The successful registration was facilitated by the simultaneous
docking of the constituent domains. The concurrent fitting of mul-
tiple structures indirectly introduces spatial constraints that guide
the optimization towards identifying the correct configuration in-
side the complex. This additional information is especially benefi-
cial at low-resolutions, where the volumetric maps have reduced
interior detail and the boundaries between domains are ambigu-
ous (Wriggers and Chacón, 2001). As opposed to other registration
methods (Volkmann and Hanein, 1999; Rossmann et al., 2001;
Lasker et al., 2009), these constraints are incorporated here solely
by the shape of the scoring landscape and not by restraining the
placement of the fragments to subregions of the search space.



Fig. 5. Scoring landscape of the multi-body correlation CCC (B, E) and of the additive measure CCCR (C, F) for the homo-trimer oxido-reductase (PDB ID 1NIC). The landscape
shows, for each grid position, the best score measured over all rotations (9� angular step size) in a scenario in which one fragment (red tube in (A) and (D)) is mobile on the
grid and the other units are held fixed (blue tube) either in the crystallographic configuration (A) or at the center of the map (D).
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Although the simultaneous registration favors the building of
native atomic models, such an optimization procedure is compu-
tationally expensive. The calculation of the cross-correlation
coefficient represents the most complex step of the approach,
in particular for assemblies composed of a larger number of frag-
ments, which require a more intensive sampling of the search
space. To enable an efficient optimization, we employed a coarse
scoring function (see Section 2). This score allowed MOSAEC to
successfully register the biomolecular systems included in the
benchmark (see Section 3) with runtimes ranging from minutes
to a few hours. For example, the seven monomers of GroEL were
simultaneously fitted into a 20 Å-resolution volumetric map in
139 min 2 with an accuracy of 1.52 Å RMSD from the known solu-
tion (700 individuals, 2000 generations and 4 parallel threads).
These runtimes were obtained using the conservative default
parameters of our software. However, tests indicated that smaller
population sizes, a coarser representation of the data or of the
score may still successfully identify the native configuration of
the system, with up to a 36-fold speed up (3.8 min) and at the
same time achieving an acceptable accuracy of 3.31 Å RMSD (for
a population size 100, 3.3-fold less feature vectors and no Gauss-
ian blurring). Moreover, the deviations mentioned in this para-
graph were computed before any optional refinement, which is
available as a final step during a MOSAEC run in our software
Sculptor.

Also, the optimization procedure was enhanced with parallel
computing strategies accompanied by horizontal gene transfer.
Such techniques were implemented both to exploit the multi-
core architecture of current computers and to take advantage
of the stochastic nature of genetic algorithms. Independent par-
2 Runtime measured on a Dual-Core Intel Xeon processor 5140 @2.33 GHz.
allel evolutions are distributed on the available CPU cores to en-
able a more efficient exploration of the scoring landscape while
investigating different pathways in the search space. The peri-
odic horizontal gene transfer that follows each parallel evolution
cycle ensures the conservation of the best individuals from each
independent thread and the preservation of gene diversity in the
population.

The previously mentioned outcomes were obtained using a de-
fault set of parameters that were estimated through empirical test-
ing. The population size is the sole parameter that should be
modified for each system to reflect the complexity of the assembly
by setting its value proportional to the number of components to
be registered (suggested scaling factor 100). All other parameters
should otherwise be held constant as tests indicated that the algo-
rithm is robust under changes in these values. Some parameters,
such as the population size or the number of parallel threads, affect
the sampling rate while others control the tabu search strategy
influencing the amount of local optimization versus global search.
The default values were selected to create a balance between sam-
pling rate and runtime of the optimization, on one hand, and
exploration and exploitation on the other.

The implementation of MOSAEC uses the C++ framework of our
molecular modeling and visualization software Sculptor (Birmanns
and Wriggers, 2007). Sculptor provides a user-friendly graphical
interface to set up the registration, to inspect intermediate results
and to pause/restart/stop the optimization process when desired
results were achieved. The interactive exploration of the interme-
diate results is possible in Sculptor due to the GA’s characteristic
to provide partial solutions to the problem during the optimization.
Sculptor is freely available at http://sculptor.biomachina.

org. In addition, we plan to develop a command-line version of
the algorithm, to be distributed with the Situs program package.

http://sculptor.biomachina.org
http://sculptor.biomachina.org
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To our knowledge MOSAEC is the first method to enable the
simultaneous registration of multiple components on an essen-
tially continuous search space. Without restricting the translations
to a grid and with a rotational step size of just one degree, MOSAEC
samples the scoring landscape in a continuous fashion making no
assumptions about the shape of the system. The exploration of this
search space is solely guided by the scoring function, a well estab-
lished cross-correlation coefficient.

Acknowledgments

We thank Willy Wriggers for stimulating discussions and valu-
able advice regarding the project, Teresa Ruiz and Michael Raderm-
acher for helpful comments and Manuel Wahle for kind input. The
present work was supported by NIH grant R01GM62968, a grant
from the Gillson-Longenbaugh Foundation, and startup funds from
the University of Texas at Houston (to S.B.).

References

Adman, E.T., Godden, J.W., Turley, S., 1995. The structure of copper-nitrite reductase
from Achromobacter cycloclastes at five pH values, with NO2-bound and with
type II copper depleted. J. Biol. Chem. 270, 27458–27474.

Alberts, B., 1998. The cell as a collection of protein machines: preparing the next
generation of molecular biologists. Cell 92, 291–294.

Baker, J.E., 1985. Adaptive selection methods for genetic algorithms. In: Proceedings
of the 1st International Conference on Genetic Algorithms, pp. 101–111.

Ban, N., Nissen, P., Hansen, J., Moore, P.B., Steitz, T.A., 2000. The complete atomic
structure of the large ribosomal subunit at 2.4 Å resolution. Science 289 (5481),
905–920.

Baumeister, W., Steven, A.C., 2000. Macromolecular electron microscopy in the era
of structural genomics. Trends Biochem. Sci. 25, 624–631.

Birmanns, S., Wriggers, W., 2003. Interactive fitting augmented by force-feedback
and virtual reality. J. Struct. Biol. 144, 123–131.

Birmanns, S., Wriggers, W., 2007. Multi-resolution anchor-point registration of
biomolecular assemblies and their components. J. Struct. Biol. 157 (1), 271–280.

Braig, K., Adams, P.D., Brünger, A.T., 1995. Conformational variability in the refined
structure of the chaperonin GroEL at 2.8 Å resolution. Nat. Struct. Biol. 2, 1083–
1094.

Ceulemans, H., Russell, R.B., 2004. Fast fitting of atomic structures to low-resolution
electron density maps by surface overlap maximization. J. Mol. Biol. 338 (4),
783–793.

Chacón, P., Wriggers, W., 2002. Multi-resolution contour-based fitting of
macromolecular structures. J. Mol. Biol. 317, 375–384.

Chapman, M.S., 1995. Restrained real-space macromolecular atomic refinement
using a new resolution-dependent electron-density function. Acta Crystallogr. A
51 (1), 69–80.

Darwin, C., 1859. On the Origin of Species by Means of Natural Selection, or, The
Preservation of Favoured Races in the Struggle for Life. John Murray, London.

Davis, L.D., Mitchell, M., 1991. Handbook of Genetic Algorithms. Van Nostrand
Reinhold.

DeRosier, D.J., Klug, A., 1968. Reconstruction of three dimensional structures from
electron micrographs. Nature 217, 130–134.

Fenton, W.A., Horwich, A.L., 2003. Chaperonin-mediated protein folding: fate of
substrate polypeptide. Quart. Rev. Biophys. 36 (2), 229–256.

Gao, H., Sengupta, J., Valle, M., Korostelev, A., Eswar, N., Stagg, S.M., Roey, P.V.,
Agrawal, R.K., Harvey, S.C., Sali, A., Chapman, M.S., Frank, J., 2003. Study of the
structural dynamics of the E. coli 70S ribosome using real-space refinement. Cell
113 (6), 789–801.

Garzón, J.I., Kovacs, J., Abagyan, R., Chacón, P., 2007. ADP_EM: fast exhaustive multi-
resolution docking for high-throughput coverage. Bioinformatics 23 (4), 427–
433.

Glover, F., 1986. Future paths for integer programming and links to artificial
intelligence. Comput. Oper. Res. 13 (5), 533–549.

Gnatt, A.L., Cramer, P., Fu, J., Bushnell, D.A., Kornberg, R.D., 2001. Structural basis of
transcription: an RNA polymerase II elongation complex at 3.3 Å resolution.
Science 292, 1876–1882.
Goldberg, D., 1989. Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley, Reading, MA.

Holland, J.H., 1975. Adaptation in Natural and Artificial Systems. University of
Michigan Press, Ann Arbor, MI.

Huber, R., Schneider, M., 1985. A group refinement procedure in protein
crystallography using Fourier transforms. J. Appl. Crystallogr. 18, 165–169.

Huxford, T., Huang, D.B., Malek, S., Ghosh, G., 1998. The crystal structure of the
IkappaBalpha/NF-kappaB complex reveals mechanisms of NF-kappaB
inactivation. Cell 95, 759–770.

Jiang, W., Baker, M.L., Ludtke, S.J., Chiu, W., 2001. Bridging the information gap:
computational tools for intermediate resolution structure interpretation. J. Mol.
Biol. 308, 1033–1044.

Klaholz, B.P., Pape, T., Zavialov, A.V., Myasnikov, A.G., Orlova, E.V., Vestergaard, B.,
Ehrenberg, M., van Heel, M., 2003. Structure of the Escherichia coli ribosomal
termination complex with release factor 2. Nature 421, 90–94.

Kleywegt, G.J., Jones, T.A., 1997. Template convolution to enhance or detect
structural features in macromolecular electron-density maps. Acta Crystallogr.
D 53, 179–185.

Ko, T.P., Safo, M.K., Musayev, F.N., Di Salvo, M.L., Wang, C., Wu, S.H., Abraham, D.J.,
2000. Structure of human erythrocyte catalase. Acta Crystallogr. D 56 (Pt. 2),
241–245.

Lasker, K., Topf, M., Sali, A., Wolfson, H.J., 2009. Inferential optimization for
simultaneous fitting of multiple components into a CryoEM map of their
assembly. J. Mol. Biol. 388 (1), 180–194.

Ludtke, S.J., Jakana, J., Song, J.L., Chuang, D.T., Chiu, W., 2001. A 11.5 Å single particle
reconstruction of GroEL using EMAN. J. Mol. Biol. 314 (2), 253–262.

Mitra, K., Frank, J., 2006. Ribosome dynamics: insights from atomic structure
modeling into cryo-electron microscopy maps. Ann. Rev. Biophys. Biomol.
Struct. 35, 299–317.

Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C.,
Ferrin, T.E., 2004. UCSF Chimera – a visualization system for exploratory
research and analysis. J. Comp. Chem. 25 (13), 1605–1612.

Ramakrishnan, V., 2002. Ribosome structure and the mechanism of translation. Cell
108, 557–572.

Roseman, A.M., 2000. Docking structures of domains into maps from cryo-electron
microscopy using local correlation. Acta Crystallogr. D 56, 1332–1340.

Rossmann, M.G., Bernal, R., Pletnev, S.V., 2001. Combining electron microscopic
with X-ray crystallographic structures. J. Struct. Biol. 136 (3), 190–200.

Rusu, M., Birmanns, S., Wriggers, W., 2008. Biomolecular pleiomorphism probed by
spatial interpolation of coarse models. Bioinformatics 24 (21), 2460–2466.

Saibil, H., 2000. Molecular chaperones: containers and surfaces for folding,
stabilising or unfolding proteins. Curr. Opin. Struct. Biol. 10, 251–258.

Sali, A., Glaeser, R., Earnest, T., Baumeister, W., 2003. From words to literature in
structural proteomics. Nature 422 (6928), 216–225.

Sigler, P.B., Xu, Z., Rye, H.S., Burston, S.G., Fenton, W.A., Horwich, A.L., 1998.
Structure and function in GroEL-mediated protein folding. Ann. Rev. Biochem.
67, 581–608.

Volkmann, N., Hanein, D., 1999. Quantitative fitting of atomic models into observed
densities derived by electron microscopy. J. Struct. Biol. 125, 176–184.

Wimberly, B.T., Brodersen, D.E., Clemons, W.M., Morgan-Warren, R.J., Carter, A.P.,
Vonrhein, C., Hartsch, T., Ramakrishnan, V., 2000. Structure of the 30S ribosomal
subunit. Nature 407 (6802), 327–339.

Wriggers, W., Birmanns, S., 2001. Using Situs for flexible and rigid-body fitting of
multi-resolution single molecule data. J. Struct. Biol. 133, 193–202.

Wriggers, W., Chacón, P., 2001. Modeling tricks and fitting techniques for
multiresolution structures. Structure 9, 779–788.

Wriggers, W., Milligan, R.A., Schulten, K., McCammon, J.A., 1998. Self-organizing
neural networks bridge the biomolecular resolution gap. J. Mol. Biol. 284, 1247–
1254.

Wriggers, W., Milligan, R.A., McCammon, J.A., 1999. Situs: a package for docking
crystal structures into low-resolution maps from electron microscopy. J. Struct.
Biol. 125, 185–195.

Wriggers, W., Agrawal, R.K., Drew, D.L., McCammon, A., Frank, J., 2000. Domain
motions of EF-G bound to the 70S ribosome: insights from a hand-shaking
between multi-resolution structures. Biophys. J. 79, 1670–1678.

Xing, X., Bell, C.E., 2004. Crystal structures of Escherichia coli RecA in complex with
MgADP and MnAMP-PNP. Biochemistry 43, 16142–16152.

Yankovskaya, V., Horsefield, R., Törnroth, S., Luna-Chavez, C., Miyoshi, H., Léger, C.,
Byrne, B., Cecchini, G., Iwata, S., 2003. Architecture of succinate dehydrogenase
and reactive oxygen species generation. Science 299 (5607), 700–704.

Yusupov, M.M., Yusupova, G.Z., Baucom, A., Lieberman, K., Earnest, T.N., Cate, J.H.,
Noller, H.F., 2001. Crystal structure of the ribosome at 5.5 Å resolution. Science
292, 883–896.


	Evolutionary tabu search strategies for the simultaneous registration  of multiple atomic structures in cryo-EM reconstructions
	Introduction
	Material and methods
	Genetic algorithms
	Encoding of a candidate solution
	Recombination
	Mutation
	New genetic operators in MOSAEC
	Reinsertion
	Tabu search

	Parallel evolution
	Fitness evaluation

	Results
	Synthetic datasets
	Experimental datasets
	Scoring landscape in simultaneous versus independent registration

	Discussion
	Acknowledgments
	References


