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Abstract

In 3D single particle reconstruction, which involves the translational and rotational matching of a large number of electron

microscopy (EM) images, the algorithmic performance is largely dependent on the efficiency and accuracy of the underlying 2D image

alignment kernel. We present a novel fast rotational matching kernel for 2D images (FRM2D) that significantly reduces the cost of

this alignment. The alignment problem is formulated using one translational and two rotational degrees of freedom. This allows us to

take advantage of fast Fourier transforms (FFTs) in rotational space to accelerate the search of the two angular parameters, while the

remaining translational parameter is explored, within a limited range, by exhaustive search. Since there are no boundary effects in

FFTs of cyclic angular variables, we avoid the expensive zero padding associated with Fourier transforms in linear space. To verify

the robustness of our method, efficiency and accuracy tests were carried out over a range of noise levels in realistic simulations of EM

images. Performance tests against two standard alignment methods, resampling to polar coordinates and self-correlation, demon-

strate that FRM2D compares very favorably to the traditional methods. FRM2D exhibits a comparable or higher robustness against

noise and a significant gain in efficiency that depends on the fineness of the angular sampling and linear search range.

� 2003 Elsevier Inc. All rights reserved.
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1. Introduction

In recent years, progress in single particle analysis of

electron microscopy (EM) images was fueled by ever

more sophisticated and powerful techniques that re-

sulted in a wealth of medium- to low-resolution recon-

structions (Ruprecht and Nield, 2001). The 2D
alignment that determines the relative orientations and

positions of two images remains a fundamental perfor-

mance bottleneck for the 3D reconstruction process

(Joyeux and Penczek, 2002). The two essential sub-

procedures in single particle analysis, 2D classification

and 3D refinement, both require the computationally

expensive alignment of a set of particle images with

certain reference images. The required number of
particle images increases dramatically as a function of

desired resolution. For example, to achieve a resolution

above 1/4�AA�1 in cryo-EM, the image number is
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supposed to reach 106 (Glaeser, 1999; Henderson, 1995).

Consequently, the efficiency of the 2D alignment meth-

od becomes a limiting factor for the improvement of

resolution. Besides, due to the iterative procedure, small

errors in the 2D alignment may result in inaccurate

3D reconstructions. Therefore, the overall quality of

the 3D reconstruction relies heavily on the accuracy of
the 2D alignment kernel used.

Various 2D alignment kernels have been proposed

for single particle analysis. A leading method is Re-

sampling to Polar Coordinates (RPC), which projects

both images into polar coordinate space with respect to

selected origin locations within the image frame (Joyeux

and Penczek, 2002; Penczek et al., 1992). In this strat-

egy, the rotational angle is determined from a 1D fast
Fourier transform (FFT), which takes advantage of the

Fourier convolution theorem, whereas the two transla-

tional parameters are determined by a limited exhaustive

search. Another efficient alternative is the indirect

alignment using the self-correlation function (SCF),

which takes advantage of the fact that the SCF of an

mail to: wriggers@biomachina.org
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image is invariant with respect to the translation of this
image (Frank et al., 1978; Schatz and van Heel, 1992;

van Heel et al., 1992). Thus, the search for the rotational

and translational parameters can be split into two parts.

First, the rotation angle between SCFs of the pair of

images is obtained in the same way as with the RPC

method, but instead of using the standard cross corre-

lation function (CCF) that is maximized in RPC, the

mutual-correlation function (MCF) is used as a match-
ing criterion (van Heel et al., 1992). Second, the trans-

lational parameters are obtained by a 2D FFT, which

takes advantage of the Fourier convolution theorem.

Besides, there are several other widely used 2D align-

ment methods, including direct alignment using 2D

FFT, sinograms (Radermacher, 1994), and direct

alignment in real space. Among these traditional meth-

ods, according to (Joyeux and Penczek, 2002), RPC is
the most accurate one. As to the efficiency, if the

translational search can be restricted to a predetermined

small value, RPC is the most efficient one; otherwise,

SCF method ranks first (Joyeux and Penczek, 2002).

All these traditional methods describe the relative

alignment of the images by one rotational and two

translational parameters. In this work we express the

problem in a different way: we propose the use of only
one translational but two rotational parameters. We

present a novel 2D fast rotational matching method

(FRM2D) that takes advantage of this formulation. It

allows us to handle the two rotational degrees of free-

dom (DOF) using a 2D FFT, avoiding the expensive

zero padding required for a numerically stable Fourier

convolution in linear space (Press et al., 1992), thereby

significantly speeding up the matching process. FRM2D
is the 2D analogue to our 6D FRM method, which was

developed for fast rigid-body docking in 3D space using

six DOF (Kovacs et al., 2003).

To test the performance and robustness of FRM2D,

we carried out efficiency and accuracy comparisons with

the two major traditional methods, RPC and SCF, on

synthesized RNA polymerase images (Darst et al., 2002)

over a range of noise levels. The results demonstrate that
in low signal to noise ratio (SNR), FRM2D is compa-

rable to the most accurate among the traditional 2D

alignment methods. Also, FRM2D has the potential to

significantly outperform the traditional methods with a

gain in efficiency depending on the fineness of angular

sampling and linear search range.
Fig. 1. FRM2D matching setup. r is the distance of a generic point p in

the image to the reference point of object f (located at the origin of the

coordinate system), and b is the corresponding polar angle. r0 and b0

are the analog quantities but relative to the reference point of object g
located at ðq; 0Þ. See text for details.
2. Methods

2.1. Theory

We describe two objects in two-dimensional space R2

by density functions:

f : R2 ! R and g : R2 ! R:
These functions are assumed to be bounded (meaning
that there is a constant M > 0 such that jf ðpÞj <M for

all p in R2) and of ‘‘compact support,’’ i.e., they vanish

outside a bounded set. When resampled to polar coor-

dinates by means of bilinear interpolation, the density

functions become functions of the radius r (distance to

the reference point of each object) and the polar angle b:
f ðr; bÞ and gðr; bÞ. These functions can be expended in

Fourier series:

f ðr; bÞ ¼
XB�1

m¼1�B

f̂fmðrÞeimb; ð1Þ

gðr; bÞ ¼
XB�1

m¼1�B

ĝgmðrÞeimb; ð2Þ

where for each r, f̂fmðrÞ is the Fourier coefficient of

f ðr; bÞ as a function of b keeping r fixed. To simplify our

notation we choose m here to be a discrete reciprocal

space coordinate corresponding to the continuous real-
space angle b. The �bandwidth� B, i.e., the number of

frequencies used in the truncated Fourier expansions, is

related to the sampling for the angular parameters.

According to the sampling theorem, the number of

sampling points in each circle equals 2B (Healy et al.,

1998). In Fig. 1 we illustrate the idea and notations of

FRM2D.

In order to conveniently express the rotation of the
object, we define the rotation operator K/ by:

ðK/gÞðpÞ :¼ gð/�1ðpÞÞ for all points p in R2:

This operator rotates the image by an angle / about the

origin. We also define, for any qP 0, the translation

operator Tq:

ðTqgÞðx; yÞ :¼ gðx� q; yÞ for all ðx; yÞ in R2:
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This operator shifts the image by a distance q along the
positive x axis.

As shown in Fig. 1, in this algorithm we rotate both

objects about their own reference point while translat-

ing one of them along the positive x axis only. The

reference point could be any point within a given image,

but it is convenient to choose the point to be an ap-

proximation of the corresponding center of mass

(COM). The essential operations within the FRM2D
scheme are as follows: firstly, translate one object (g in

Fig. 1) along the positive x axis a distance q (Kovacs

et al., 2003) while keeping the other one (f in Fig. 1) at

the origin; secondly, rotate both of them around their

own COMs (the COM of f is at the origin, while the

COM of g is at ðq; 0Þ) to find the best matching position

at this value of q; then repeat the above two steps until

reaching the best global score. Here we use two angular
parameters / and /0 to describe the rotations of the two

objects f and g, respectively, about their own COMs. In

this way, the three-dimensional search is performed

over two angular parameters / and /0 and one linear

parameter q. Note that the following operations are

carried out without any physical rotation or translation

of the objects, so there are no interpolations involved

other than those in the initial resampling to polar
coordinates.

By using the expression of the two objects in Fourier

space (Eqs. (1) and (2)) and the definition of the oper-

ators, the object f becomes, after rotation:

ðK/f Þðr; bÞ ¼
X
m

f̂fmðrÞeimðb�/Þ: ð3Þ

Likewise, the object g can be expressed, after translation

and rotation, as:

ðTqK/0gÞðr; bÞ ¼ ðK/0gÞðr0; b0Þ ¼
X
n

ĝgnðr0Þeinðb
0�/0Þ; ð4Þ

where r0 and b0 are the analog quantities to r and b, but
relative to the reference point of object g (located at
ðq; 0Þ, see Fig. 1).

The criterion for matching of the two objects is to

maximize the correlation between one of them and a

rotated and translated version of the other. In FRM2D,

based on the above definition, the correlation between

the rotated object f and the rotated and translated ob-

ject g is written as:

cð/;/0; qÞ ¼
Z
R2

K/f � TqK/0g: ð5Þ

Here, we perform the complex conjugation (denoted by

overlines) of the two factors. This has no immediate

effect since the factors are real, but we obtain later the
desired sign in the exponential of the Fourier transform.

The correlation is a function of the two rotations /, /0

and of the distance q (Fig. 1). Since there is no boundary

effect in FFTs in rotational space, we avoid the zero

padding associated with the Fourier convolution in
linear space. Using the expansions of the rotated and
translated objects in Eqs. (3) and (4), the correlation in

Eq. (5) turns out to be:

cð/;/0;qÞ ¼
Z 1

0

Z 2p

0

X
m

f̂fmðrÞeimð/�bÞ

�
X
n

ĝgnðr0Þeinð/
0�b0Þrdbdr;

which can be rewritten as:

cð/;/0;qÞ ¼
X
m;n

eiðm/þn/0ÞImnðqÞ; ð6Þ

where

ImnðqÞ ¼
Z 1

0

Z 2p

0

e�imb e�inb0 ĝgnðr0Þ
� �

db

� �
� f̂fmðrÞ � rdr:

If we denote the parenthesis inside the integral by

hnr;qðbÞ ¼ e�inb0 ĝgnðr0Þ, we see that the inner integral is just
the Fourier transform of hnr;qðbÞ (in this equation we use

the direct dependence of r0 and b0 on r, b, and q, see
Fig. 1). Thus ImnðqÞ turns out to be:

ImnðqÞ ¼ 2p
Z 1

0

ðĥhnr;qÞm � f̂fmðrÞ � rdr: ð7Þ

Eq. (6) shows that ImnðqÞ is just the 2D Fourier trans-

form of the correlation function cð/;/0; qÞ. Hence:

ĉcðm; n; qÞ ¼ ImnðqÞ ¼ 2p
Z 1

0

ðĥhnr;qÞm � f̂fmðrÞ � rdr: ð8Þ

Note that in Eq. (8), ðĥhnr;qÞm is the only factor containing

information about object g, while the information about

object f enters only through the second factor, f̂fmðrÞ.
Therefore, to match one reference image with many
particle images, we compute ðĥhnr;qÞm for this reference

image only once and store it in memory, and then use it

for the matching with each of the particle images. This

feature would in principle permit us to parallelize the

code, although this was not exploited in the present

work.

After computing ĉcðm; n; qÞ, an inverse 2D FFT gives

us the cross-correlation function (CCF) as a function of
the two rotation angles for each value of q. Then a peak

search strategy is carried out to determine the maximum

correlation value and the two corresponding rotation

angles. We repeat this process for each q within a certain

range. In practice, q will be small which allows for an

efficient scan (see next section).

If the COMs of the pair of images can be determined

exactly, we note that the two COMs should coincide,
i.e., q ¼ 0. In this case, the 2D Fourier transform of the

correlation function ĉcðm; n; qÞ in Eq. (8) reduces to the

standard 1D Fourier transform:

ĉc1ðmÞ ¼ 2p
Z 1

0

f̂fmðrÞ � ĝgmðrÞ � rdr;

which is the way it is used in both RPC and SCF

methods to determine the rotational angle.
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2.2. Scanning of linear separation

The FRM2D strategy can be further accelerated if we

restrict the scanning of the parameter q to a small range.

In the following we show how to determine this range

according to the shapes and sizes of the objects.

In this algorithm, g is considered as the reference

image, and f as the particle image (Fig. 1). First we

define the following radii: rmin;f and rmax;f are the min
and max distances from the COM to the star hull of

object f , respectively; similarly rmin;g and rmax;g are the

corresponding min and max distances for object g.
In term of these, we define the maximum and mini-

mum q (the distance between the COMs of the two

objects) to be scanned:

qmax ¼
rmax;g � rmin;f ðif rmax;g > rmax;f Þ;
rmax;f � rmin;g ðif rmax;g < rmax;f Þ;

�

qmin ¼ 0:

The expression for qmax indicates that if the two 2D

images represent the same object (common case in EM

image processing), and they have spherical shape, then

the difference between rmax;g and rmin;f should be a small

value. In this case, the range for q will be small, and the

performance of the code will be faster than for generic
particle shapes.

A comparison with the notation of the RPC method

reveals that qmax is equivalent to the maximum trans-

lation of the image, k, except that k is measured in pixel

units by (Joyeux and Penczek, 2002).

As mentioned earlier, another aspect that will im-

prove the efficiency of FRM2D is the accuracy in the

determination of the COMs of the images. Currently, in
order to obtain the most accurate COMs of the low-

resolution image, we use the averaged density of the

reference images as a mask (Penczek et al., 1992).

Moreover, in our implementation, if the maximum
Table 1

The effect of the angular sampling and the exhaustive search range k on the

k s FRM2D RPC

ðk þ 1Þs2ðn=8þ 2 log2 sÞ lnsð1:7þ 0:5

4 25 117 760 1 132 190

26 512 000 2 533 940

27 2 211 840 5 607 010

28 9 502 720 12 292 300

10 25 259 072 6 164 120

26 1 126 400 13 795 900

27 4 866 050 30 527 100

28 20 906 000 66 924 700

n ¼ 104 is the pixel size of the image in one dimension, s is the number

search range in pixels, and l ¼ ð2k þ 1Þ2 is the number of possible translatio

method; rows 3–6 show the operation counts for each method with the COM

28, 27, 26, and 25 sampling points, corresponding to 1.4�, 3�, 6�, and 11� step
pixels.
correlation values keep dropping for four consecutive q
values, the scanning is aborted.

In addition, in Eq. (8) the integral range is restricted.

Here are the actual maximum and minimum r values

used in the computation of the integral:

rmax ¼
qþ rmax;g if ðqþ rmax;gÞ < rmax;f ;
rmax;f if ðqþ rmax;gÞP rmax;f ;

�

rmin ¼
q� rmax;g if ðq� rmax;gÞP 0;
0 if ðq� rmax;gÞ < 0:

�

2.3. Elementary arithmetic operations

In this section we enumerate the elementary opera-

tions required by all three 2D alignment methods. This

reveals how the image size, the angular sampling, and

the image number affect the efficiency. In the 3D re-

finement process of single particle analysis, a small

number of reference images are typically matched with a

large number of particle images. Therefore, we only
consider the number of operations of the ‘‘core’’ steps in

each method, while ignoring the pre-computations

which are determined just once. The arithmetic opera-

tion counts for the three 2D alignment methods are

listed in Table 1.

We define the following elementary operations: rotate

image ðn2Þ, convert image to polar coordinates

ð
ffiffiffi
2

p
ns ffi 1:4nsÞ (to make sure all the parts of the image

are considered, the sampling radius is the diagonal of

the image,
ffiffiffi
2

p
n), 1D FFT (n log2 n and s log2 s for

Cartesian and polar representations, respectively), and

2D FFT (2n2 log2 n and 2s2 log2 s for Cartesian and

polar representations, respectively). Here n is the size of

the image in one dimension, and s is the number of

angular sampling points in each concentric ring. To

compare the effect of the angular sampling fineness for
the three methods, in the following operation counts we
operation counts of FRM2D, RPC, and SCF

SCF

log2 sÞ n2ð32 log2 nþ 38Þ þ nsð0:5 log2 sþ 1:7Þ

2 744 090

2 761 390

2 799 330

2 881 870

2 744 090

2 761 390

2 799 330

2 881 870

of angular sampling points in each concentric ring, k is the exhaustive

ns. The second row lists the numbers of arithmetic operations for each

uncertainty k ¼ 4 pixels and under different angular samplings, namely

s, respectively; while rows 7–10 show the operation counts with k ¼ 10
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use the exact number of angular sampling points, s, in-
stead of the approximation value pn used by Joyeux and

Penczek (2002). As in (Joyeux and Penczek, 2002) we

use k to express the maximum translation of the image

in pixel units.

For the FRM2D counts, the one-time polar resam-

pling and pre-computing of the 1D FFTs for both ref-

erence and particle images, and of ĥhnr;qðmÞ for the

reference images, are ignored. The computation of the
integral in Eq. (8) requires s

2
� n
2
� s
2
¼ ns2

8
operations. Here

one of the s=2 factors originates from the integral range

of m. Since we use the FFTW package to calculate the

Fourier transforms (FTs), where for the complex to real

transform just the half dimension of the complex array

is needed (Frigo and Johnson, 1997), only an s=2 range

for m is considered in the implementation of our code.

The n=2 factor originates from the integral range for r.
The other s=2 factor reflects the integral range for n.
Theoretically, n should vary from �s=2 to s=2, but since
for the n-dependent term in the integral of Eq. (8),

ĥhnr;qðmÞ, holds ĥh�n
r;qðmÞ ¼ ĥhnr;qðmÞ ¼ ĥhnr;qð�mÞ, we can ex-

ploit this relationship and reduce the range of n to s=2.
In the next step, an inverse 2D FFT is needed to cal-

culate the CCF, which requires 2s2 log2 s operations.

The above two steps must be repeated (k þ 1) times for
the translational scan of q, bringing the total operation

count to ðk þ 1Þs2ðn=8þ 2 log2 sÞ.
For the RPC counts, the one-time polar resampling

of the reference images and the pre-computing of their

1D FFTs are ignored. The main computing effort is

spent on the particle image resampling, 1.4ns, followed

by the 1D FFTs of all concentric rings of the particle

images, 0:5n � s log2 s. These 1D FFTs must be multi-
plied by the 1D FFTs of the reference images, ns=4.
Finally an inverse 1D FFT is carried out, s log2 s, but
this term is small and is neglected in the following. The

above processes require ð1:4nsþ 0:5ns log2 sþ 0:25nsÞ ffi
nsð1:7þ 0:5 log2 sÞ operations. These steps have to be

repeated for l ¼ ð2k þ 1Þ2 translations of the particle

images, bringing the total number of operations to

lnsð1:7þ 0:5 log2 sÞ. In the image processing of EM
data, the value of 0:5 log2 s is usually a single digit

number, so we keep the constant 1.7 in this operation

count, in contrast to (Joyeux and Penczek, 2002), where

it is neglected.

For the SCF counts, we ignore the one-time pre-

computing of the SCFs for the reference and particle

images. The angle between the two SCFs of reference

and particle images is calculated using the resampling to
polar coordinates technique as described above, re-

quiring nsð1:7þ 0:5 log2 sÞ operations (no zero padding

in this step). To calculate the translation parameters by

using the convolution theorem, each image is padded

with zeros to double the size in each dimension, there-

fore the operation number of 2D FFTs for the double

sized image is 2ð2nÞ2 log2 2n ¼ 8n2 log2 nþ 8n2. Then a
rotation of the particle image by the angle found, and a
2D FFT of the image must be carried out, consuming

ðn2 þ 8n2 log2 nþ 8n2Þ operations. Subsequently, an in-

tegral and an inverse 2D FFT have to be performed to

calculate the CCF, ð2n2 þ 8n2 log2 nþ 8n2Þ operations.

The above two steps must be performed for both the

angle found and for that angle increased by 180�, using
n2ð32 log2 nþ 38Þ operations. Therefore, the total

number of operations required is n2ð32 log2 nþ 38Þþ
nsð0:5 log2 sþ 1:7Þ.
3. Results

3.1. Test image preparation

Images observed by EM are not true projections of
the specimen. Imaging artifacts include the effects of the

contrast transfer function (CTF), which is introduced

through electron lens aberrations and defocusing (Zhu

et al., 1997; Ludtke and Chiu, 2002), and also the en-

velope function of the microscope, which contains

contributions from a number of effects, such as spatial

and temporal coherence, specimen motion, etc. (Hans-

zen, 1971). In addition, background noise is present
from a variety of sources. Therefore, in the process of

synthesizing test images, we attempted to closely emu-

late the image formation process in the electron micro-

scope including the effects of CTF, envelope function

and noise.

In this paper we take RNA polymerase as an example

(Darst et al., 2002). All test images were synthesized

from the atomic structure using the EMAN single par-
ticle analysis software (Ludtke et al., 1999). For the ef-

ficiency test (benchmark) of the three 2D alignment

methods, we generated the top view 2D projection of

RNA polymerase as a test image (see Fig. 2), where a

Gaussian low-pass filter with half-width 1/15�AA�1 was

applied to simulate the effect of the envelope function.

The image size is 104� 104 pixels and the pixel size in

this test is 1.7�AA/pixel. In addition, to make the test re-
alistic, CTF and Gaussian noise were also applied to the

image. Here, we use the CTF and noise parameters ta-

ken from the experimental measurements made on a

JEOL 4000 electron microscope with a LB6 gun oper-

ated at 400 kV with an objective lens spherical aberra-

tion coefficient of 4.1mm (Ludtke et al., 1999). Fig. 2B

shows the representative projection with CTF parame-

ters applied, which was used as reference image in the
efficiency test. We rotated this image 100� and then

translated it 6 and )4 pixels in the x and y directions,

respectively, to provide a target for our search. To

simulate the effect of background noise, Gaussian noise

was applied to this rotated and translated image using

EMAN�s command ‘‘applyctf’’ with noise level 0.3. The

resulting image, Fig. 2C, was used as the particle image



Fig. 2. Synthetic images used in the test of algorithm efficiency. (A) Projection of RNA polymerase (Darst et al., 2002) after Gaussian low-pass

filtering with half-width of spatial frequency 1/15�AA�1. (B) Image (A) after application of the CTF (see text). (C) Image (B) after rotation by 100� and
translation by (6 pixels, )4 pixels), followed by corruption with Gaussian noise (SNR¼ 0.1477). (D) Image (B) but rotated and translated to be in the

same location as image (C). We use image (D) as the reference image to calculate the SNR in (C).
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in the benchmark calculations. We use Fig. 2D, which is

similar to Fig. 2B, except that the object is in the loca-

tion of Fig. 2C, as the reference to calculate the signal to

noise ratio (defined as SNR ¼ r2signal=r
2
noise). For exam-

ple, the SNR value of Fig. 2C is 0.1477.

To carry out the accuracy comparison of the three 2D

alignment methods, we generated six random 2D pro-

jections of RNA polymerase of various shapes (Fig. 3).
A Gaussian low-pass filter with half-width of 1/15�AA�1

was applied to all these projections to simulate the effect

of the envelope function. Then a CTF simulation was

applied to them. These images (after the application of

envelope function and CTF) were used as reference

images in the accuracy test (Fig. 3A–F). Subsequently,
Fig. 3. Synthetic images used for the accuracy test. (A–F) Six random proje

width 1/15�AA�1, to which a CTF was applied, the resulting images being used

is rotated and translated (here: 100�, 6 pixels, )4 pixels), and then corrupte

command ‘‘applyctf,’’ with a total of 100 noise levels), leading to a variation

levels changing from 0.1 to 1 (in EMAN units), in 0.1 unit increments.
each reference image was rotated and translated with

five different sets of rotation and translation values:

(100�; 6 pixels, )4 pixels), (320�; 3 pixels, )7 pixels),

(88�; )2 pixels, 3 pixels), (160�; 5 pixels, 3 pixels) and

(76�; )3 pixels, )4 pixels). Finally, 100 different levels of

Gaussian noise (from 0.01 to 1 in EMAN command

‘‘applyctf’’) were added to each of these rotated and

shifted images. To provide reasonable statistics, we re-
peated the addition of (statistically independent)

Gaussian noise 20 times for each image. Thus, a total of

60,000 images were generated as test images to compare

the accuracy of the 2D alignment methods. We have

also tested the method with the circularly shaped

GroEL, obtaining correct alignment results. For the
ctions of RNA polymerase after Gaussian low-pass filtering with half-

as reference images. (G–P) Taking projection (A) as an example, image

d with Gaussian noise (noise level range from 0.01 to 1 using EMAN

in SNR from 0.008 to 153.12. Here we show ten examples with noise



Y. Cong et al. / Journal of Structural Biology 144 (2003) 51–60 57
sake of brevity, here we just list the results for RNA
polymerase.

3.2. Efficiency comparison

Among the traditional 2D alignment methods, if the

translational exhaustive search range k in the RPC

method can be restricted to a small value, RPC is faster

than the other methods including SCF; otherwise, SCF
ranks as the most efficient one (Joyeux and Penczek,

2002). To test the overall efficiency performance of

FRM2D, we therefore implemented the fastest two

methods, RPC and SCF, for comparison. In the test, the

exhaustive search range k was restricted to 4 pixels for

both FRM2D and RPC methods. If the COMs of the

objects can be reasonably well determined, a search re-

stricted to 4 pixels is sufficient and will not degrade the
performance. Besides, for SCF, a zero padding to dou-

ble the size in each image dimension was applied because

of the requirement for the numerically accurate convo-

lution in linear space (van Heel et al., 1992). All the

computations were carried out on an AMD Athlon

1900+ dual processor PC under Linux.

To test the effect of the particle image number on the

efficiency of the three methods, we used particle image
numbers increasing from 10, 50, 100, 1000, 2000, 3000 to

4000, while the reference image number was restricted to

2 (to test the implementation of the loop for the refer-

ence images in the source code). Besides, to test the effect

of the angular sampling on the efficiency, the tests were

conducted with four angular sampling levels: 11�, 6�, 3�,
and 1.4�. The timings for these angular samplings are

given in Table 2. Due to the near-linear scaling we show
the timings only for 10 and 4000 particle images.

As seen in Table 2, compared to RPC and SCF,

FRM2D shows a more pronounced dependence on the

fineness of the angular sampling. For example, in the

case of 4000 particle images the increase in angular

sampling from 6� to 3� yields an increase by a factor 3.1

for FRM2D, whereas the timings increase by a factor

2.1 and 1.1 for RPC and SCF, respectively. The opera-
tion numbers in Table 1 also indicate that for FRM2D,

the efficiency depends quadratically on the sampling

point numbers, s, and for RPC, the dependence is linear,

while for SCF, the effect of s can be ignored.
Table 2

The effect of particle image numbers (n ¼ 104 pixles) and of the angular sam

search range (times in seconds)

Angular

sampling

10 Particle images

FRM2D RPC SCF

11� 0.31 1.15 0.51

6� 0.88 1.86 0.53

3� 3.15 3.96 0.57

1.4� 12.34 7.38 0.64
The timings in Table 2 illustrate that for 4000 particle
images (k ¼ 4 pixels, n ¼ 104 pixels) FRM2D is faster

than RPC. This is in agreement with the corresponding

comparison of the operation numbers listed in Table 1.

An increasing search range k will attenuate the speed of

RPC (quadratically) more than that of FRM2D (line-

arly). Likewise, an increasing image size affects more the

performance of RPC. In contrast, an increased angular

sampling slows FRM2D more than RPC. The combi-
nation of these factors determines which method is a

better choice in different conditions. For example, for

k ¼ 4 and n ¼ 300, FRM2D is the better choice for any

reasonable angular sampling as fine as 0.7�.
As seen in Table 2, the comparison of FRM2D with

SCF shows the importance of angular sampling. For

instance, for 4000 particle images, in the coarse angular

samplings of 11� and 6�, FRM2D is faster than SCF;
while for the fine angular samplings of 3� and 1.4�, SCF
is faster. This is in general agreement with the corre-

sponding comparison of the operation numbers listed in

Table 1. Unlike in SCF, there is no zero padding in

FRM2D, which affords FRM2D more efficiency com-

pared to SCF in coarse angular sampling. However,

FRM2D determines the relative orientation of the ob-

jects through a 2D FFT technique, while SCF through a
1D FFT. In fine sampling this slows down FRM2D

compared to SCF.

Next, we demonstrate the effect of the image

number, indicating the effect of precomputation, on

the efficiency of FRM2D and SCF alignment methods.

Taking an angular sampling of 6� as an example, for

which both methods show comparable efficiency

(Table 2), Fig. 4 shows the compute time as a function
of the number of image matches (reference image

number times particle image number). The number of

reference images used was 2 and 5. For SCF, the effect

of precomputation is negligible, i.e., the lines keep the

same linear trend irrespective of the reference image

number. But in the case of FRM2D, the effect of the

precomputation to determine ðĥhnr;qÞm for each reference

image (Eq. (8)) is quite obvious: FRM2D (6�)
lags behind SCF for low matching numbers, but it

improves and outperforms SCF when the matching

image number increases. Therefore, FRM2D is espe-

cially suitable for many particle images, since the extra
pling on the efficiency of FRM2D, RPC, and SCF with a k ¼ 4 pixel

4000 Particle images

FRM2D RPC SCF

79.98 447.02 193.39

174.89 736.52 201.19

542.93 1552.72 214.87

2044.64 2875.23 238.34



Fig. 4. 2D alignment time versus the number of image matches (ref-

erence image number times particle image number) for FRM2D and

SCF methods. The reference image numbers are 2 and 5, and the an-

gular sampling is 6�.
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overhead to determine ðĥhnr;qÞm for each reference image

becomes negligible.

3.3. Accuracy comparison

In this section, we describe our evaluation of the

overall matching accuracy of the three 2D alignment

methods. The pixel error d sin D/
2

�� ��þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2 þ Dy2

p
was

used to measure the accuracy (Joyeux and Penczek,
Fig. 5. (A)–(C) Scatter plot of pixel error as a function of SNR for the 2D alig

error as a function of SNR for the three methods.
2002). Here d is the diameter of the particle in pixel
units. In this formula, the first term describes errors

introduced by the rotation misalignment D/, and the

second one describes the errors from the translation

misalignment Dx and Dy. Fig. 3 shows a representative

set of the test images. There were 100 Gaussian noise

levels added by the EMAN software package, corre-

sponding to an SNR range between 0.008 and 153.12.

The total number of test images was 60,000. All the
accuracy tests were carried out at an angular sampling

level of 1.4�, fine enough to give highly accurate results.

The scatter plots of observed pixel errors versus SNR

for FRM2D, RPC, and SCF are shown in Fig. 5A–C,

respectively, and the average pixel error versus SNR for

the three methods is shown in Fig. 5D. Fig. 5A–C show

that for a high SNR range (>10) the pixel errors for

all the three methods remains at a low value near 1 pixel,
so in Fig. 5D we focus on the interesting range where the

methods break down (SNR between 0.008 and 10).

As seen in Fig. 5D, for all the three methods, in the

high SNR range (>0.2 for FRM2D and RPC, and >0.4

for SCF), the average pixel errors remain below 2 pixels;

when the SNR decreases below this value (0.2 for

FRM2D and RPC, and 0.4 for SCF), the average pixel

errors increase sharply. In the case of the SCF method,
the increase of pixel error with the decrease of SNR

below 0.4 is more pronounced than that of FRM2D and

RPC, suggesting that SCF exhibits more intrinsic sen-

sitivity to noise than the other two alignment methods.

In addition, we see in Fig. 5A, B, and D that for

FRM2D and RPC, the overall shapes of their curves are

very similar especially in the low SNR region, suggesting

that the accuracies of FRM2D and RPC are quite
comparable.
nment methods including FRM2D, RPC, and SCF. (D) Average pixel
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To obtain accuracies better than 5 pixels, the mini-
mum SNR values required are: 0.08, 0.09, and 0.28 for

FRM2D, RPC, and SCF, respectively. This means that

to obtain reliable alignment result, SCF usually requires

much higher quality images than the other two methods.

In the low SNR value range (<0.04) the alignment re-

sults are essentially random.

Besides the intrinsic sensitivity of SCF to noise, an-

other factor that reduces SCF accuracy is interpolation
after rotational alignment. Both translation by a non-

integer number and any rotation (except for special

cases of 90�, 180�, and 270�) require interpolation. In

contrast, FRM2D and RPC do not suffer from the ro-

tational interpolation problem, since the translations

and rotations are performed analytically.
4. Conclusions

In this paper we propose a novel 2D fast rota-

tional matching (FRM2D) algorithm to conduct 2D

image matching in single particle analysis. By recasting

the matching problem (usually including one rotational

and two translational DOF) into a formulation involv-

ing two rotational and one translational DOFs, we are
able to use FFT techniques to accelerate the two angular

parameter searches, while the translational parameter is

searched within a limited range.

To verify the robustness of FRM2D method, we per-

formed efficiency and accuracy tests with synthesized

RNA polymerase images over a range of noise levels. For

comparison purposes, we implemented two other leading

2D alignmentmethods, RPC and SCF, which ranked best
among all traditional alignment algorithms in overall

efficiency and accuracy (Joyeux and Penczek, 2002).

We tested the accuracy of the three methods on a set

of test images prepared according to the theory of image

formation in the electron microscope. The overall accu-

racy of FRM2D is similar to the best performing tradi-

tional method, RPC, due to the use of the standard

correlation and due to the absence of rotational resam-
pling artifacts inherent to both methods. With decreasing

SNR value, the accuracy of SCF deteriorates sooner

than observed for the other two methods, which is in line

with earlier observations (Joyeux and Penczek, 2002).

The efficiency comparison shows that FRM2D has

the potential to outperform the traditional 2D alignment

methods depending on the desired fineness of angular

sampling and the exhaustive search range. The observed
possible gains in efficiency will require future verification

under realistic settings within established single particle

reconstruction packages. Suffice it to note that FRM2D

has a number of desirable performance properties: the

translational search scales linearly, not quadratically,

with the ‘‘particle picking inaccuracy,’’ and the 2D FFT

operates in rotational space, avoiding the costly zero-
padding of linear space FFTs. Based on our efficiency
and accuracy tests, FRM2D should be a sensible choice

for image alignment, as it combines the speed of SCF

with the accuracy of RPC.

FRM2D awaits further test when used with real EM

images. At present, the FRM2D implementation is

written in C, based in part on libraries of our Situs fit-

ting package. Since Situs is limited to 3D modeling,

FRM2D will be disseminated separately and the source
code is currently available from us by request.
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